• Title/Summary/Keyword: EC cell

Search Result 421, Processing Time 0.025 seconds

Effects of Agmatine on Polyamine Metabolism and the Growth of Prostate Tumor Cells

  • Choi, Yon-Sik;Cho, Young-Dong
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • The effects of agmatine on the enzymes responsible for the biosynthesis of polyamines, the resultant levels of polyamines, and their effect on the growth of DU145 human prostate tumor cells were investigated. When agmatine was added to the medium, ornithine decarboxylase (ODC, EC 4.1.1.17) activity was substantially reduced, but S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) activity increased markedly. These changes in ODC and SAMDC activities were the result of an induction of ODC-antizyme and a decreased turnover rate of SAMDC in the presence of agmatine. Accordingly, there was a decrease in the intracellular levels of putrescine and spermidine but an increase in the intracellular level of spermine. Cell growth was markedly inhibited by agmatine treatment and this inhibition was not recovered by the addition of putrescine or spermidine. Our results suggest that agmatine alters the intracellular amounts of polyamine in the cells, closely related to the inhibition of cell growth.

  • PDF

천연물로 부터 새로운 암세포 분화인자의 검색 및 그 항암기전에 관한 연구

  • 김규원
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.206-206
    • /
    • 1994
  • 1차년도에 F9 EC cell의 분화유도 시스템을 확립한뒤 계속적으로 해양생물로 부터 분리한 여러가지 물질을 처리하여 세포의 형태 변화 및 분화 관련 유전자 즉 laminin Bl, type IV collagen, RAR-$\beta$ 의 발현을 조사하였다. 그 결과 다수의 물질이 F9 세포를 분화시키는데 효과가 있는 것으로 나타났으며, 효과있는 물질들에 대한 구조분석이 계속적으로 실시되고 있다. 뿐만 아니라 분화효과가 있는 물질중에서 그 구조적으로 특이한 성질을 가진 물질에 대하여 이 물질이 암세호의 분화에 미치는 기작에 대해 조사하였다. 구체적인 실험내용을 요약하면 다음과 같다. 1. F9 EC cell에 스크리링할 물질의 처리 후 형태 변화 관찰 2. 분화 maker 유전자의 발현 조사 3, 작용 기작에 대한 조사

  • PDF

리튬고분자 이차전지의 전기적 전기화학적 특성

  • 박수길;박종은;손원근;류부형;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.159-162
    • /
    • 1998
  • The new type polymer electrolyte composed of polyacrylonitrile(PAN) baed polymer electrolyte contain LiClO$_4$-EC/PC and LiPF$\sub$6/-EC/PC were developed for the weightless and long or life time of lithium polymer battery system with using polyaniline electrode. The gel type electrolytes were prepared by PAN at different lithium salts in the glove box. We prepared for polymer electrolyte with knife casting method. The minimum thickness of PAN gel electrolyte for the slim type is about <400∼500$\mu\textrm{m}$. These gel electrolytes showed good compatibility with lithium electrode. The test cell of Li/polymer electrolyte/Lithium cobalt oxide solid state cell which was prepared by different lithium salt was researched by electrochemical technique. Resistance of polymer electrolyte which consist of LiClO$_4$ is more less than that of LiPF$\sub$6/ and cycle life is more longer than that of LiPF$\sub$6/.

  • PDF

Investigation of Temperature Effect on Electrode Reactions of Molten Carbonate Electrolysis Cells and Fuel Cells using Reactant Gas Addition Method

  • Samuel Koomson;Choong-Gon Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • The impact of temperature on electrode reactions in 100 cm2 molten carbonate cells operating as Fuel Cells (FC) and Electrolysis Cells (EC) was examined using the Reactant Gas Addition (RA) method across a temperature range of 823 to 973 K. The RA findings revealed that introduction of H2 and CO2, reduced the overpotential at Hydrogen Electrode (HE) in both the modes. However, no explicit temperature dependencies were observed. Conversely, adding O2 and CO2 to the Oxygen Electrode (OE) displayed considerable temperature dependencies in FC mode which can be attributed to increased gas solubility due to the electrolyte melting at higher temperatures. In EC mode, there was no observed temperature dependence for overpotential. Furthermore, the addition of O2 led to a decrease in overpotential, while CO2 addition resulted in an increased overpotential, primarily due to changes in the concentration of O2 species.

Optimization of the cryopreserved condition for utilization of GPCR frozen cells (GPCR 냉동보관 세포의 활용을 위한 냉동조건의 최적화 연구)

  • Noh, Hyojin;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1200-1206
    • /
    • 2015
  • The major target for drug discovery, G-protein coupled receptor (GPCR) is involved in many physiological activities and related to various diseases and disorders. Among experimental techniques relating to the GPCR drug discovery process, various cell-based screening methods are influenced by cell conditions used in the overall process. Recently, the utilization of frozen cells is suggested in terms of reducing data variation and cost-effectiveness. The aim of this study is to evaluate various conditions in cell freezing such as temperature conditions and storage terms. The stable cell lines for calcium sensing receptor and urotensin receptor were established followed by storing cultured cells at $-80^{\circ}C$ up to 4 weeks. To compare with cell stored at liquid nitrogen, agonist and antagonist responses were recorded based on the luminescence detection by the calcium induced photoprotein activation. Cell signals were reduced as the storage period was increased without the changes in $EC_{50}$ and $IC_{50}$ values $EC_{50}:3.46{\pm}1.36mM$, $IC_{50}:0.49{\pm}0.15{\mu}M$). In case of cells stored in liquid nitrogen, cell responses were decreased comparing to those in live cells, however changes by storage periods and significant variations of $EC_{50}/IC_{50}$ values were not detected. The decrease of cell signals in various frozen cells may be due to the increase of cell damages. From these results, the best way for a long-term cryopreservation is the use of liquid nitrogen condition, and for the purpose of short-term storage within a month, $-80^{\circ}C$ storage condition can be possible to adopt. As a conclusion, the active implementation of frozen cells may contribute to decrease variations of experimental data during the initial cell-based screening process.

Anti-allergic Effect of Eckolona cava Ethyl Acetate Fraction of on IgE/BSA-stimulated Bone Marrow-derived Cultured Mast Cells (IgE/BSA가 자극한 골수유래 비만 세포에 대한 감태 Ethyl Acetate 분획물의 항알러지 효능)

  • Han, Eui Jeong;Kim, Hyun Soo;Shin, Eun Ji;Kim, Min Ju;Han, Hee-Jin;Jeon, You-Jin;Jee, Youngheun;Ahn, Ginnae
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • In this study, we investigated the anti-allergic effect of the ethyl acetate fraction of Ecklonia cava (EC-EtoAc) on the immunoglobulin E (IgE)/bovine serum albumin (BSA)-mediated activation of bone marrow-derived cultured mast cells (BMCMCs). We revealed that the $62.5{\mu}g/ml$ of EC-fractions ($EC-CHCl_3$, EC-Hexane and EC-EtoAc) inhibited IgE/BSA-activated ${\beta}$-hexosaminidase release from BMCMCs without cytotoxicity. Especially, EC-EtoAc showed the higher ${\beta}$-hexosaminidase release than the others. Also, EC-EtoAc reduced the expression levels of cytokines such as interleukin (IL)-$1{\beta}$, IL-4, IL-5, IL-6, IL-10, IL-13, interferon (IFN)-${\gamma}$ and tumor necrosis factor (TNF)-${\alpha}$ and a chemokine, thymus- and activation-regulated chemokine (TARC), compared to the only IgE/BSA-treated BMCMCs. Furthermore, EC-EtoAc significantly prevented the binding of IgE to Fc epsilon receptor $(Fc{\varepsilon}R)I$ and reduced the $Fc{\varepsilon}RI$ expression on the sensitized BMCMCs. Taken together, these results suggest that E. cava may be the natural agent with beneficial potentials for the treatment of type I allergic diseases induced by mast cell activation.

Anti-oxidative and anti-proliferative activities of acetone extract of the cortex of Ulmus pumila L. (유근피 아세톤 추출물의 항산화 및 암세포 증식억제 활성)

  • In, Man-Jin;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.133-136
    • /
    • 2016
  • An acetone extract in the cortex of Ulmus pumila L. was prepared to evaluate its anti-oxidative and anti-proliferative activities. The free radical scavenging activity ($EC_{50}=36.7{\mu}g/mL$) and reducing power ($EC_{50}=53.2{\mu}g/mL$) proportionally increased according to the extract concentration. The acetone extract possessed a potent anti-proliferative activity against human non-small cell lung cancer (A549, $GI_{50}=74.3{\mu}g/mL$) and human colon cancer (SNU-C4, $GI_{50}=92.8{\mu}g/mL$) cells in a dose-dependent manner, but was less effective with human normal cells (L132, human embryonic lung epithelial cell).

Physical Properties of $LiPF_6/PC+EC+DEC$ Electrolyte by the Variation of PC Fraction and Initial Electrochemical Properties of Carbon Anode in the Electrolyte (PC 비율에 따른 $LiPF_6/PC+EC+DEC$ 전해액의 물리적 특성 및 탄소분극과의 초기 전기화학적 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.224-231
    • /
    • 2000
  • The exfoliation of graphite (layer) was progressed due to the irreversible insertion of PC molecules between graphene layers, when propylene carbonate (PC) solvent was used as the organic solvents. The problem could be mitigated by the replacement of PC by ethylene carbonate (EC). But, the freezing point of EC-based electrolyte increased due to the high freezing point of $EC(36.2^{\circ}C)$. Therefore, EC+PC mixed electrolyte is expected as a good organic electrolyte for lithium ion battery. The EC-based organic electrolyte containing PC within pertinent quantity can be expected to have high molar conductivity and reduced exfoliation of graphite layer. The dielectric constant and molar conductivity of $LiPF_6/PC+EC+DEC$ electrolyte was investigated with a variation in the PC content. The electrochemical properties of carbon electrode in the electrolyte were also investigated. Molar conductivity and dielectric constant increased linearly by increasing the PC volume fraction in the electrolyte. The results of charge-discharge test for carbon/electrolyte/Li cell indicated that the initial irreversible specific capacity(IIC) of MCMB-6-28s and MPCF3000 decreased by the addition of $0.83 vol\%$ of PC, but increased with PC content over than $0.83 vol\%$. In the case of MPCF3000 and PCG100 having less than $10 vol\%$ PC, IIC was lower than 50 mAh/g. The discharge specific capacities varied with carbon material, but did not vary with PC content in the electrolyte.

Electrochemical Properties of $Li_xV_3O_8$ Composite Cathode for All-solid state Rechargeable Battery (고체전지용 $Li_xV_3O_8$ Composite 정극의 전기화학적 특성)

  • 김종욱;성창호;구할본;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.733-738
    • /
    • 1998
  • 본 논문에서는 고체 리듐 전지를 개발하기 위하여 poly(ethylene oxide) [PEO] 에 $LiClO_4$, poly (vinylidene fluoride) [PVDF] 및 가소제로 propylene carbonate [PC] 와 ethylene carbonate[EC] 등을 혼합여 고분자 저해질을 제조하였다. 또한 고체 리듐 전지용 정극으로써 우수한 특성이 기대되는 $Li_xV_3O_8$을 졸-겔법에 의해 합성하여 $Li_xV_3O_8$SPE/Li cell 의 전기화학적 특성을 측정하였다. 고분자 matrix는 PEO와 PVDE를 혼합 사용한 결과 $PEO_4 PVDF_4LiCIO_4PC_5EC_5$ 고분자 전해질이 상온에서 $5.2 {\times} 10{-3}$ S/cm 의 높은 이온 전도도를 나타냈으며 리듐 이온 transference number는 0.3이었다. 졸-겔법에 의해 제조된 $Li_xV_3O_8$을 사용한 $Li_xV_3O_8$SPE/Li cell의 방전시 cell 저항이 방전 초기에는 비소한 증가를 하다가 방전 말기 전압인 2.0V에서 크게 증가하였다. $Li_xV_3O_8$ composite 정극의 첫 번째 방전 용량은 295㎃h/g이었으며 8번째 충방전 싸이클부터 방전 용량이 안정화 되었고 15번째 방전 용량도 212㎃h/g으로 고체 전지용 정극으로써 우수한 특성을 보였다.

  • PDF

On Formation of Residual Carbon Layer in CuInSe2 Thin Films Formed via direct Solution Coating Process (직접 용액 코팅법에 의해 제조한 CuInSe2 에 잔존하는 탄소 불순물층 형성에 관한 연구)

  • Ahn, SeJin;Rehan, Shanza;Eo, Young-Joo;Gwak, Jihye;Yoon, Kyunghoon;Cho, Ara
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2014
  • Formation mechanism of residual carbon layer, frequently observed in the $CuInSe_2$ (CIS) thin film prepared by direct solution coating routes, was investigated in order to find a way to eliminate it. As a model system, a methanol solution with dissolved Cu and In salts, whose viscosity was adjusted by adding ethylcellulose (EC), was chosen. It was found that a double layer, a top metal ion-derived film and bottom EC-derived layer, formed during an air drying step presumably due to different solubility between metal salts and EC in methanol. Consequently, the top metal ion-derived film acts as a barrier layer inhibiting further thermal decomposition of underlying EC, resulting a formation of bottom carbon residue layer.