Acknowledgement
This research was supported by the New & Renewable Energy Core Technology Programme of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry, and Energy, Republic of Korea (No. 20213030040080).
References
- Koomson, S. and Lee, C. G., "Comparison of Gas Phase Transport Effects Between Fuel Cell and Electrolysis Cell Modes of a 100 cm2 Class Molten Carbonate Cell," J. Electroanal. Chem., 925, 116896(2022).
- Koomson, S. and Lee, C.-G., "Reaction Characteristics of Molten Carbonate Cell Operated in Fuel Cell and Electrolysis modes with Reactant Gas Addition Method," J. Electroanal. Chem., 117577 (2023).
- Koomson, S., Bae, S. H., Kim, K. M. and Lee, C.-G., "Effect of Temperature on the Electrode Overpotential of Molten Carbonate Electrolysis and Fuel Cells with Inert-gas Step Addition Method," J. Electroanal. Chem., 950, 17844(2023).
- Saito, T., Itoh, Y., Nishioka, M. and Miyake, Y., "Effect of Operating Temperature on the Performance of Molten-carbonate Fuel Cells," J. Power Sources., 36, 69-77(1991). https://doi.org/10.1016/0378-7753(91)80045-Y
- Morita, H., Komoda, M., Mugikura, Y., Izaki, Y., Watanabe, T., Masuda, Y. and Matsuyama, T., "Performance Analysis of Molten Carbonate Fuel Cell Using a Li/Na Electrolyte," J. Power Sources., 112, 509-518(2002). https://doi.org/10.1016/S0378-7753(02)00468-8
- Musa, A., Steeman, H.-J. and De Paepe, M., The Effect of Operating Temperature on the Performance of Molten Carbonate Fuel Cell systems, in: 16th World Hydrog. Energy Conf., International Association for Hydrogen Energy, 2006.
- Lee, C. G., "Influence of Temperature on the Anode Reaction in a Molten Carbonate Fuel Cell," J. Electroanal. Chem., 785, 152-158(2017). https://doi.org/10.1016/j.jelechem.2016.12.032
- Lee, C. G., "Effect of Temperature on the Cathodic Overpotential in a Molten Carbonate Fuel Cell," J. Electroanal. Chem., 701, 36-42(2013). https://doi.org/10.1016/j.jelechem.2013.04.025
- Hu, L., Rexed, I., Lindbergh, G., and Lagergren, C., "Electrochemical Performance of Reversible Molten Carbonate Fuel Cells," Int. J. Hydrogen Energy., 39, 12323-12329(2014). https://doi.org/10.1016/j.ijhydene.2014.02.144
- Hu, L., Lindbergh, G., Lagergren, C., "Operating the Nickel Electrode with Hydrogen-lean Gases in the Molten Carbonate Electrolysis Cell (MCEC)," Int. J. Hydrogen Energy., 41, 18692-18698(2016). https://doi.org/10.1016/j.ijhydene.2016.06.037
- Hu, L., Lindbergh, G. and Lagergren, C., "Electrode Kinetics of the Ni Porous Electrode for Hydrogen Production in a Molten Carbonate Electrolysis Cell (MCEC)," J. Electrochem. Soc., 162, F1020-F1028(2015). https://doi.org/10.1149/2.0491509jes
- Hu, L., Lindbergh, G. and Lagergren, C., "Electrode Kinetics of the NiO Porous Electrode for Oxygen Production in the Molten Carbonate Electrolysis Cell (MCEC)," Faraday Discuss., 182, 493-509(2015). https://doi.org/10.1039/C5FD00011D
- Perez-Trujillo, J. P., Elizalde-Blancas, F., Della Pietra, M. and McPhail, S. J., "A Numerical and Experimental Comparison of a Single Reversible Molten Carbonate Cell Operating in Fuel Cell Mode and Electrolysis Mode," Appl. Energy., 226, 1037-1055 (2018). https://doi.org/10.1016/j.apenergy.2018.05.121
- Audasso, E., Kim, K. I., Accardo, G., Kim, H. S. and Yoon, S. P., "Investigation of Molten Carbonate Electrolysis Cells Performance for H2 Production and CO2 Capture," J. Power Sources., 523, 231039(2022).
- Lee, C. G., Hwang, J. Y., Oh, M., Kim, D. H., Lim, H. C., "Overpotential Analysis with Various Anode Gas Compositions in a Molten Carbonate Fuel Cell," J. Power Sources., 179, 467-473(2008). https://doi.org/10.1016/j.jpowsour.2007.12.125