• Title/Summary/Keyword: E3 Dynamics

Search Result 354, Processing Time 0.029 seconds

c-Cbl Acts as an E3 Ligase Against DDA3 for Spindle Dynamics and Centriole Duplication during Mitosis

  • Gwon, Dasom;Hong, Jihee;Jang, Chang-Young
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.840-849
    • /
    • 2019
  • The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.

System Dynamics Model for Analyzing and Forecasting the National Energy-Economy-Environment(3E) Changes under Levying of Carbon Tax (탄소세 부과에 따른 국내 에너지-경제-환경(3E) 변화 분석 및 예측을 위한 시스템다이내믹스 모델 개발)

  • Song, Jae-Ho;Jeong, Suk-Jae;Kim, Kyung-Sup;Park, Jin-Won
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.149-170
    • /
    • 2006
  • In this paper, an energy-economy-environment dynamic simulation model was developed to using system dynamics methodology. It describes current energy-economy-environment systems and forecasts changes caused by levying of carbon tax. The model is composed of three modules: an energy module, an economic module and an environmental module. Variables are interrelated in each module, and three modules are linked by several linkage variables. Setting up the linkage variables is an important factor for the composition of the model. The simulation result shows a change of the national GDP, usage of energy, and $CO_2$ emissions under levying and reinvestment of carbon tax considering various scenarios for the charging cost.

  • PDF

Dynamics and Bleaching of Ground State in CdSe/ZnS Quantum Dots

  • Kim, J.H.;Kyhm, K.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.184-187
    • /
    • 2006
  • For resonant excitation of the ground state $1s^e-1S^h_{3/2}$, dynamics of 'the electron-hole pair in a CdSe quantum dot was investigated by degenerate pump-probe measurement. At low e-h pair densities, the decay of $1s^e-1S^h_{3/2}$ state is dominated by radiative recombination. As the number of the electron-hole pairs increases, new decay features become significant. Theoretical comparison suggests this is attributed to the bi-molecular and Auger-type scattering.

e-Trust: Complexity of the lssue and Limitations of Trustmarks (시스템다이내믹스 기법을 이용한 전자상거래와 e-Trust의 동태성에 관한 연구)

  • Kim, Jong-Tae;Yeon, Seung-Jun;Park, Sang-Hyun;Kim, Sang-Uk
    • Korean System Dynamics Review
    • /
    • v.5 no.1
    • /
    • pp.99-110
    • /
    • 2004
  • Building trust assurance particularly in case of commercial practices in cyber space without physical contact is a very complex task to tackle. Several factors are interrelated in not necessarily technical but also societal dimensions over the entire process of e-commerce firm ex-ante through ex-post transactions. This paper attempts first to brief the substance of e-trust and examine the natuure of its complexity by using system dynamics simulation technique, followed by its current address and the future directions to move. A framework of 3 x 3 matrixes is deviaed and the key issues of e-trust are mapped into cross-cells of the table. The paper also includes some possible suggestions on the matter of trust assurance especially for B2C and B2B in policy wise and organizational perspective from the context of international collaboration.

  • PDF

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Rotational viscosity calculation method for liquid crystal mixture using molecular dynamics

  • Kim, J.S.;Jamil, M.;Jung, J.E.;Jang, J.E.;Lee, J.W.;Ahmad, F.;Woo, M.K.;Kwak, J.Y.;Jeon, Y.J.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.135-139
    • /
    • 2011
  • This paper presents the directly obtained rotational viscosity values of E7, which includes pentylcyanobiphenol, heptylcyanobiphenol, 4-cyano-4'-n-octyloxy-1,1'-biphenyl, and 4-cyano-4"-n-pentyl-1,1',1"-terphenyl, at various tempe using molecular dynamics computer simulation. The director mean squared displacement was achieved from the squared displacement of the mean director using the concept of the mean director of various nematic liquid crystals. The calculated values were compared with the experiment results that predicted a good agreement. Additional points that must be considered for further study are also discussed.

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.

Impact of playout buffer dynamics on the QoE of wireless adaptive HTTP progressive video

  • Xie, Guannan;Chen, Huifang;Yu, Fange;Xie, Lei
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.447-458
    • /
    • 2021
  • The quality of experience (QoE) of video streaming is degraded by playback interruptions, which can be mitigated by the playout buffers of end users. To analyze the impact of playout buffer dynamics on the QoE of wireless adaptive hypertext transfer protocol (HTTP) progressive video, we model the playout buffer as a G/D/1 queue with an arbitrary packet arrival rate and deterministic service time. Because all video packets within a block must be available in the playout buffer before that block is decoded, playback interruption can occur even when the playout buffer is non-empty. We analyze the queue length evolution of the playout buffer using diffusion approximation. Closed-form expressions for user-perceived video quality are derived in terms of the buffering delay, playback duration, and interruption probability for an infinite buffer size, the packet loss probability and re-buffering probability for a finite buffer size. Simulation results verify our theoretical analysis and reveal that the impact of playout buffer dynamics on QoE is content dependent, which can contribute to the design of QoE-driven wireless adaptive HTTP progressive video management.

How Group Dynamics Affect Team Achievements in Virtual Environments

  • Lee, Ji-Eun;Shin, Minsoo
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.64-72
    • /
    • 2014
  • This study explored the elements that affect team achievements in virtual environments. In this study, consideration was given to the role of group dynamics in facilitating productive interaction. We aspired to reveal the mechanisms of group dynamics and examined how group dynamics affected team achievements in virtual environments. The empirical study was performed with undergraduate students enrolled in an e-learning course. In collaboration with other majors, students executed team projects and managed project issues in forums or chat rooms. The results of the empirical study indicated that leadership, creative friction, and group cohesion (components of group dynamics) had positive relationships with team achievements. The findings confirmed that addressing creative conflict is a method to improve team performance and that leadership is a key factor in project teams.

Molecular Dynamics Simulations of Nanomemory Element Based on Boron Nitride Nanotube-to-peapod Transition

  • Hwang Ho Jung;Kang Jeong Won;Byun Ki Ryang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • We investigated a nonvolatile nanomemory element based on boron nitride nanopeapods using molecular dynamics simulations. The studied system was composed of two boron-nitride nanotubes filled Cu electrodes and fully ionized endo-fullerenes. The two boron-nitride nanotubes were placed face to face and the endo-fullerenes came and went between the two boron-nitride nanotubes under alternatively applied force fields. Since the endo-fullerenes encapsulated in the boron-nitride nanotubes hardly escape from the boron-nitride nanotubes, the studied system can be considered to be a nonvolatile memory device. The minimum potential energies of the memory element were found near the fullerenes attached copper electrodes and the activation energy barrier was $3{\cdot}579 eV$. Several switching processes were investigated for external force fields using molecular dynamics simulations. The bit flips were achieved from the external force field of above $3.579 eV/{\AA}$.