• Title/Summary/Keyword: E. coli expression system

Search Result 284, Processing Time 0.028 seconds

Development of E. coli Expression System to Overproduce a Harmful Protein, Carboxypeptidase Taq.

  • Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.108-110
    • /
    • 2001
  • The E. coli expression system to overproduce a harmful protein, carboxypeptidase Taq was developed. Since expression plasmid pCK305N containing the colicin promoter already has the initiation codon on the restriction site, the initiation codon of the CPase Taq gene was removed. Expression plasmid pCP4-col includes the entire CPase Taq gene, which is directed by the colicin promoter. E. coli cells harboring pCP-col produced a high amount of the enzyme when they were cultured in the present of mitomycin C (0.4 ${\mu}g$/ml). An amount of purified enzyme produced by pCP4-col directed by the colicin promoter was 10.5 mg. This result indicated that the novel E. coli expression system controlled by the colicin promoter could produce almost twice amounts of CPase Taq than the conventional system controlled by the tart promoter.

  • PDF

Expression of Hepatitis B Viral Core Antigen Gene in Excherichia coli (대장균에서 한국형 B형 간염바이러스 내면항원 유전자의 발현)

  • 최수근;이원상;김성기;노현모
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.80-84
    • /
    • 1991
  • We cloned and expressed hepatitis B viral core antigen (HBcAg) gene in E. coli using $P_{L}$ promoter system. For optimal expression of the gene, we undertook the studies on the effects of the distance between Shine-Dalgarno (SD) sequence and start codon, copy number of repressor gene, induction temperature, and the stability of the core antigen. The results demonstrated that the induction at 37.deg.C was more efficient than at 42.deg.C, and the 11 base pairs (bp) distance between SD sequence and start codon of HBcAg gene was more efficient than the 15 bp distance in E. coli. The copy number of cI857 repressor gene did not influence on the expression of HBcAg, and the expression level of HBcAg in mutant type (low protease activity) and wild type strains was almost the same. The produced core antigen appeared to be HBcAg not HBeAg judged by two different radioimmunoassat (RIA) kits. This result suggested that the antigen was stable in E. coli.i.

  • PDF

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

An Efficient Secretion of Type I Secretion Pathway-Dependent Lipase, TliA, in Escherichia coli: Effect of Relative Expression Levels and Timing of Passenger Protein and ABC Transporter

  • Eom Gyeong-Tae;Rhee Joon-Shick;Song Jae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1422-1428
    • /
    • 2006
  • An ABC transporter apparatus of the Gram-negative bacterial type I secretion pathway can be used as a secretory protein expression system in Escherichia coli. Four types of coexpression systems for the Pseudomonas fluorescens lipase gene, tliA, and its cognate ABC transporter gene cluster, tliDEF, were constructed. When the relative expression levels were changed by adding different concentrations of IPTG, the secretion (16.9 U/ml of culture) of TliA in E. coli [pTliDEFA-223+pACYC184] was significantly higher than E. coli [pKK223-3+pTliDEFA-184] secreting the lowest level of TliA (5.2 U/ml of culture). Maximal accumulation of the lipase secreted occurred in the mid-exponential phase, implying that the efficient protein secretion via an ABC transporter was restricted only to actively growing cells. Finally, the secretion level of TliA in E. coli [pTliDEFA-223+pACYC184] was increased to 26.4 U/ml by inducing gene expression at the culture initiation time. These results indicate that a significant increase in the ABC transporter-dependent protein secretion can be achieved by simply controlling the relative expression levels between the ABC transporter and its passenger protein, even in the recombinant E. coli cells.

Comparative Study on Characterization of Recombinant B Subunit of E. coli Heat-Labile Enterotoxin (rLTB) Prepared from E. coli and P. pastoris

  • Ma, Xingyuan;Yao, Bi;Zheng, Wenyun;Li, Linfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.550-557
    • /
    • 2010
  • Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-1 fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6$\times$His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at $30^{\circ}C$, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at $37^{\circ}C$. The expression level increased dramatically to 250-300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6$\times$His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GMI gangliosides. The MW of LTB-6$\times$His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system.

Effects of Co-Expression of Liver X Receptor β-Ligand Binding Domain with its Partner, Retinoid X Receptor α-Ligand Binding Domain, on their Solubility and Biological Activity in Escherichia coli

  • Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.247-254
    • /
    • 2015
  • In this presentation, I describe the expression and purification of the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a commercially available double cistronic vector, pACYCDuet-1, to express the receptor heterodimer in a single cell as the soluble form. I describe here the expression and characterization of a biologically active heterodimer composed of the liver X receptor β-ligand binding domain and retinoid X receptor α-ligand binding domain. Although many of these proteins were previously seen to be produced in E. coli as insoluble aggregates or "inclusion bodies", I show here that as a form of heterodimer they can be made in soluble forms that are biologically active. This suggests that co-expression of the liver X receptor β-ligand binding domain with its binding partner improves the solubility of the complex and probably assists in their correct folding, thereby functioning as a type of molecular chaperone.

Functional expression of CalB in E.coli (대장균에서의 Candida antarctica lipase B 최적 발현)

  • Kim, Hyun-Sook;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.445-448
    • /
    • 2008
  • Candida antarctica lipase B (CalB) is an efficient biocatalyst for many organic synthesis reactions. To make full use of CalB, we need effective expression system. Previously recombinant CalB was successfully expressed in the methylotropic yeast Pichia pastoris. In addition, we succeed in the functional expression of CalB in the Escherichia coli cytoplasm. This CalB expression system in E.coli has many considerable advantages in comparison with other expression systems and enables high-throughput screening of gene libraries as those derived from directed evolution experiments. To optimize E.coli system, we investigate comparing between OrigamiB (DE3) and BL21 (DE3) and observing effect of IPTG amount.

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

Expression of Recombinant Human Cytochrome P450 1A2 in Escherichia coli Bacterial Mutagenicity Tester Strain

  • Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.305-309
    • /
    • 1998
  • Human cytochrome P450 1A2 is one of the major cytochrome P450s in human liver. It is known to be capable of activating a number of carcinogens such as arylamines and heterocyclic amines. In order to develop the new bacterial mutagenicity test system with human P450, a full length of human P450 1A2 cDNA inserted into pCW bacterial expression vector was introduced to Escherichia coli WP2 uvrA strain which is a well-known E. coli strain for bacterial reverse mutagenicity assay. Expressed human P450 1A2 showed typical P450 hemoprotein spectra. Maximum expression was achieved at 48 hrs after incubating at $30^{\circ}C$ in terrific broth containing ampicillin, IPTG and other supplements. High level expression of P450 1A2 in E. coli WP2 uvrA membranes was determined in SDS-PAGE. The well-known mutagens 2-aminoanthracene and MElQ increased the revertant colonies of E. coli WP2 uvrA expressing human P450 1A2 without an exogenous rat hepatic post-mitochondrial supernatant (S9 fraction) in a dose-dependent manner. The results show that the functional expression of human P450 in bacterial mutagenicity tester strain will provide a useful tool for studying the mechanism of the mutagenesis and carcinogenesis of new drugs and environmental chemicals.

  • PDF

Expression of an Antimicrobial Peptide Magainin by a Promoter Inversion System

  • Lee, Jae-Hyun;Hong, Seung-Suh;Kim, Sun-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.34-41
    • /
    • 1998
  • A method was developed for the controlled expression of an antimicrobial peptide magainin in Escherichia coli. A series of concatemeric magainin genes was constructed with a gene amplification vector, and fused to the 3'end of malE gene encoding the affinity ligand, E. coli maltose-binding protein (MBP). The construct directed the synthesis of the fusion protein with the magainin polypeptide fused to the C-terminus of MBP. The fusion protein was expressed in a tightly regulatable expression system which was under the control of an invertible promoter. The MBP-fused magainin monomer was expressed efficiently. However, the expression level of the MBP-fused magainin in E. coli decreased with the increasing size of multimers possibly because of the transcription and translation inhibition by the multimeric peptides. After purification using an amylose affinity column, the fusion protein was digested by factor Xa at a specific cleavage site between the monomers. The recombinant magainin had an antimicrobial activity identical to that of synthetic magainin. This experiment shows that a biologically active, antimicrobial peptide magainin can be produced by fusing to MBP, along with a promoter inversion vector system.

  • PDF