• Title/Summary/Keyword: E. coli MG 1655

Search Result 14, Processing Time 0.024 seconds

Effect of Organic Acids Derived from Black Liquor on Growth of Selected Escherichia coli MG 1655 (흑액 유래 유기산의 Escherichia coli MG 1655 성장에 미치는 영향 탐색)

  • Moon, Joon-Kwan;Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.758-767
    • /
    • 2014
  • In this study, we selected an Escherichia coli strain (E. coli MG 1655) metabolizing arabinose derived from acid hydrolyzed black liquor as a carbon source and investigated effect of organic acids (acetic acid, formic acid, and lactic acid) presented in black liquor on growth of the E. coli MG 1655. We measured growth of E. coli MG 1655 under various concentration of each and combined three kinds of organic acids. The E. coli MG 1655 shows tolerance to acetic acid, lactic acid and formic acid at these concentrations ($1.0g/{\ell}$ acetic acid, $1.2g/{\ell}$ lactic acid and $0.8g/{\ell}$ formic acid, respectively), but displays some growth retardation over $1.5g/{\ell}$ acetic acid, lactic acid $2.0g/{\ell}$, and formic acid $1.2g/{\ell}$, respectively. In addition, formic acid was shown to be a critical factor affecting growth of the E. coli MG 1655 in the presence of three kinds of organic acids. These results indicate that the inhibitors should be removed at least $1.0g/{\ell}$ of acetic acid, $1.2g/{\ell}$ of lactic acid, $0.8g/{\ell}$ of formic acid for normal cell growth required for high yield fermentation. In addition, there is a need to construct recombinant strains that may be resistant to the same or higher organic acids concentration (> $1.2g/{\ell}$) in the growth.

Evaluation of Various Escherichia coli Strains for Enhanced Lycopene Production

  • Jun Ren;Junhao Shen;Thi Duc Thai;Min-gyun Kim;Seung Ho Lee;Wonseop Lim;Dokyun Na
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.973-979
    • /
    • 2023
  • Lycopene is a carotenoid widely used as a food and feed supplement due to its antioxidant, anti-inflammatory, and anti-cancer functions. Various metabolic engineering strategies have been implemented for high lycopene production in Escherichia coli, and for this purpose it was essential to select and develop an E. coli strain with the highest potency. In this study, we evaluated 16 E. coli strains to determine the best lycopene production host by introducing a lycopene biosynthetic pathway (crtE, crtB, and crtI genes cloned from Deinococcus wulumuqiensis R12 and dxs, dxr, ispA, and idi genes cloned from E. coli). The 16 lycopene strain titers diverged from 0 to 0.141 g/l, with MG1655 demonstrating the highest titer (0.141 g/l), while the SURE and W strains expressed the lowest (0 g/l) in an LB medium. When a 2 × YTg medium replaced the MG1655 culture medium, the titer further escalated to 1.595 g/l. These results substantiate that strain selection is vital in metabolic engineering, and further, that MG1655 is a potent host for producing lycopene and other carotenoids with the same lycopene biosynthetic pathway.

Enhanced Lycopene Production in Recombinant Escherichia coli by Random Transposon and NTG Mutagenesis (Transposon 및 NTG 돌연변이를 이용한 재조합 대장균의 라이코펜 생산성 증진)

  • Yoon, Sang-Hwal;Ko, Min-Su;Park, Kyoung-Ae;Jung, Kyung-Hwa;Shin, Yong-Chul;Lee, Young-Mi;Lee, Sook-Hee;Kim, Seon-Won
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • Escherichia coli harboring pAC-LYCO4 and pDdxs was used for lycopene production. Three wild type strains of E. coli OW1, MG1655, and W3110 were compared with DH5${\alpha}$ used before for lycopene production. Lycopene productivity of E. coli MG1655 was similar to DH5${\alpha}$ and the highest among those wild type strain. Therefore, MG1655 strain was used for random transposon and NTG mutagenesis to increase lycopene productivity. Through transposon mutation, five transposon mutants with increased lycopene productivity were obtained. It was found that genes knocked out by transposon insertion were treB in Tn1 mutant, B2436 in Tn2 mutant, and rfaH in Tn3, 4, and 5 mutants. Lycopene productivity was the highest in Tn4 mutant among the Tn mutants, which was 6-fold and 8-fold higher in lycopene concentration and content, respectively, in comparison with those obtained with wild type strain. NTG4 mutant was acquired with NTG mutation. The highest lycopene productivity of 6 mg/L and 4 mg/g DCW was obtained from the NTG4 mutant when arabinose of 0.013 mM was added for induction of dxs, rate-limiting gene of MEP pathway. The lycopene productivity of NTG4 mutant was increased 18-fold and 12-fold in lycopene concentration and content, respectively when comparing with the wild type strain.

Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains

  • Han, Mee-Jung;Lee, Sang-Yup;Hong, Soon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.470-478
    • /
    • 2012
  • Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane ${\beta}$-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.

Extraction of Intracellular Lipids from Recombinant E. coli for Improving Long-chain Fatty Acid Production (긴 사슬 지방산 생산을 위해 재조합된 E. coli로부터의 세포 내 지질 추출)

  • Ham, Su Mi;Yoo, In Sang;Park, Sang Joon;Kim, Ji Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.482-486
    • /
    • 2013
  • Recently, biohydrocarbons are gathering an interest as a new bioenergy due to the versatile applicability. In the present work, a process is proposed for the recovery of lipids from Recombinant E. coli MG1655 which provides longer chain fatty acids. After the growth of the recombinant E. coli, the cells were disrupted by high pressure homogenizer for obtaining intracellular lipids and the resulting solutions were centrifuged and extracted. For the efficient cell disruption with high pressure homogenizer, the pressure higher than 5,000 psi was required. In addition, under the conditions of applied pressure 5,000 to 20,000 psi, 1~3 pass homogenizing was enough for the more than 90% cell disruption. As organic solvents for extraction of lipid, hexane/isopropyl alcohol and ethyl acetate/ethanol systems showed excellent extracting power. With these solvent systems, the 60% lipid could be recovered. Moreover it was found that the extracted lipids contained long-chain fatty acids such as $C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$.

The Screening and Characterization of Promoters Inducible by Superoxide Radical in Escherichia coli (대장균에서 Superoxide 라디칼에 의하여 유도되는 프로모터의 탐색 및 특성 분석)

  • 고영상;노정혜
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.267-273
    • /
    • 1993
  • We screened promoters inducible by superoxide radical from Escherichia coli. For this. we constructed random promoter library from E. coli MG 1655 using a promoter-probing plasmid. pJAC4. Six hundred and sixty clones in this library were classified based on their promoter strength by ampicillin gradient plate assay. Three hundred and eighty three clones with relatively weak to medium promoter strength were selected and then screened for their inducibility by superoxide radical on ampicillin gradient plate containing paraquat. Three clones (clones 5. 15 and 34) were detected to be induced by paraquat treatment and the level of induction were between 1.4 and 4 folds. Comparison of nucleotide sequences of the cloned promoter fragment with registered sequences in GENBANK and EMBL databases suggests that the cloned DNA fragments have not been yet characterized in E. coli. Transcription start sites in these clones were determined by rrimer extension and S I nuclease protection analysis. S 1 analysis of clones 5 and IS indicated that the mRNA levels were increased by paraquat treatment. Especially. clone 5 \vas found to have two transcription start sites. the upstream start site of which was selectively used by paraquat treatment. Searching for promoter clements. we found that only the downstream promoter of clone 5 has -10 and - 35 promoter elements recognized by RNA polymerase ($E\sigma^{70}$) and the others have no conserved promoter elements. This suggests that these superoxideinducible promoters may require transcription initiation protein(s) other than $E\sigma^{70}$.

  • PDF

Overexpression of YbeD in Escherichia coli Enhances Thermotolerance

  • Kim, Sinyeon;Kim, Youngshin;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.401-409
    • /
    • 2019
  • Heat-resistant microbial hosts are required for bioprocess development using high cell density cultivations at the industrial scale. We report that the thermotolerance of Escherichia coli can be enhanced by overexpressing ybeD, which was known to encode a hypothetical protein of unknown function. In the wild-type E. coli BL21(DE3), ybeD transcription level increased over five-fold when temperature was increased from $37^{\circ}C$ to either $42^{\circ}C$ or $46^{\circ}C$. To study the function of ybeD, a deletion strain and an overexpression strain were constructed. At $46^{\circ}C$, in comparison to the wild type, the ybeD-deletion reduced cell growth half-fold, and the ybeD-overexpression promoted cell growth over two-fold. The growth enhancement by ybeD-overexpression was much more pronounced at $46^{\circ}C$ than $37^{\circ}C$. The ybeD-overexpression was also effective in other E. coli strains of MG1655, W3110, DH10B, and BW25113. These findings reveal that ybeD gene plays an important role in enduring high-temperature stress, and that ybeD-overexpression can be a prospective strategy to develop thermotolerant microbial hosts.

Characterization of the Nickel Resistance Gene from Legionella pneumophila: Attenuation of Nickel Resistance by ppk (polyphosphate kinase) Disruption in Escherichia coli

  • Hahm, Dae-Hyun;Yeon, Mi-Jung;Ko, Whae-Min;Lee, Eun-Jooh;Lee, Hye-Jung;Shim, In-Sop;Kim, Hong-Yeoul
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.114-120
    • /
    • 2002
  • A 1,989-bp genomic region encoding nickel resistance genes was isolated from Legionella pneumophila, a pathogen for legionellosis. From a sequencing and computer analysis, the region was found to harbor two structural genes, a nreB-like protein gene (1,149 bp) and a nreA-like protein gene (270 bp), in a row. Both genes exhibited a significant degree of similarity to the corresponding genes from Synechocystis sp. PCC6803 ($54\%$ amino acid sequence identity) and Achromobacter xylosoxidans 31A ($76\%$). The gene was successfully expressed in E. coli MG1655 and conferred a nickel resistance of up to 5 mM in an LB medium and 3 mM in a TMS medium including gluconate as the sole carbon source. E. coli harboring the nickel resistance gene also exhibited a substantial resistance to cobalt, yet no resistance to cadmium or zinc. Since the extracellular concentration of nickel remained constant during the whole period of cultivation, it was confirmed that the nickel resistance was provided by an efflux system like the $Ni^2+$permease (nrsD) of Synechocystis sp. strain PCC6803. Since polyphosphate (poly-P) is known as a global regulator for gene expression as well as a potential virulence factor in E. coli, the nickel resistance of a ppk mutant of E. coli MG 1655 harboring the nickel resistance gene from L. pneumophila was compared with that of its parental strain. The nickel resistance was significantly attenuated by ppk inactivation, which was more pronounced in an LB medium than in a TMS medium.

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

Cloning and Expression of $\beta$-Glucuronidase from Lactobacillus brevis in E. coli and Application in Bioconversion of Baicalin and Wogonoside

  • Kim, Hyun-Sung;Kim, Jin-Yong;Park, Myeong-Soo;Zheng, Hua;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1650-1655
    • /
    • 2009
  • The $\beta$-glucuronidase (GUS) gene from Lactobacillus brevis RO1 was cloned and expressed in Escherichia coli GMS407. The GUS gene was composed of 1,812 bp, encoding a 603-amino-acid protein belonging to glycosyl hydrolase family 2 with three conserved domains. The amino acid similarity was higher than 70% with the $\beta$-glucuronidases of various microorganisms, yet less than 58% with the $\beta$-glucuronidase of L. gasseri ADH. Overexpression and purification of the GUS was performed in $\beta$-glucuronidase-deficient E. coli GMS407. The purified GUS protein was 71 kDa and showed 1,284 U/mg of specific activity at optimum conditions of pH 5.0 and $37^{\circ}C$. At $37^{\circ}C$, the GUS remained stable for 80 min at pH values ranging from 5.0 to 8.0. The purified enzyme exhibited a half-life of 1 h at $60^{\circ}C$ and more than 2 h at $50^{\circ}C$. When the purified GUS was applied to transform baicalin and wogonoside into their corresponding aglycones, $150\;{\mu}M$ of baicalin and $125\;{\mu}M$ of wogonoside were completely transformed into baicalein and wogonin, respectively, within 3 h.