• Title/Summary/Keyword: E. coli LI-10

Search Result 61, Processing Time 0.033 seconds

Comparative Study on Characterization of Recombinant B Subunit of E. coli Heat-Labile Enterotoxin (rLTB) Prepared from E. coli and P. pastoris

  • Ma, Xingyuan;Yao, Bi;Zheng, Wenyun;Li, Linfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.550-557
    • /
    • 2010
  • Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-1 fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6$\times$His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at $30^{\circ}C$, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at $37^{\circ}C$. The expression level increased dramatically to 250-300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6$\times$His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GMI gangliosides. The MW of LTB-6$\times$His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system.

Expression of E. coli Phosphofructokinase Gene in an Autotrophic Bacterium Acidithiobacillus thiooxidans

  • Tian, Ke-Li;Lin, Jian-Qun;Liu, Xiang-Mei;Liu, Ying;Zhang, Chang-Kai;Yan, Wang-Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.56-61
    • /
    • 2004
  • A plasmid pSDK-l containing the Escherichia coli phosphofructokinase-l gene (pfkA) was constructed, and transferred into extremely acidophilic Acidithiobacillus thiooxidans Tt-7 by conjugation with the aid of plasmid RP4 at a frequency of $10^{-5}$ per recipient. This plasmid was stable in A. thiooxidans. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium, but the enzyme activity (21.6 U/g protein) was lower than that in E. coli (K12: 85.9 Dig protein; DF1010 carrying plasmid pSDK-l: 96.6 U/g protein). In the presence of glucose, the Tt-7 transconjugants consumed glucose, leading to a better growth yield.

Antimicrobial Resistance Profiles of eae Positive Escherichia coli (eae+ Escherichia coli의 항생제 감수성 및 내성 패턴)

  • Lee, Min-Hwa;Choi, Chang-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.2
    • /
    • pp.116-119
    • /
    • 2007
  • The antimicrobial susceptibility and antibiotic resistance patterns of 67 eae positive Escherichia coli strains isolated from pigs were investigated by disc diffusion method. Sixty-seven E. coli isolated from pigs showed susceptibility to Ceftiofur (98.5%), Lincomycin+Spectinomycin (74.6%), Danofloxacin (73.1%), Enrofloxacin (64.2%), and Neomycin (41.8%). However, the multiple resistance patterns were also seen in eae+E. coli isolates. Neomycin+Tylosin+Penicillin+Tetracycline, Tylosin+Penicillin+Tetracycline, and Neomycin+Tylosin+Danofloxacin+Penicillin+Tetracycline+Enrofloxacinwere the most prevalent patterns of multiple antibiotic resistance.

Rapid Preparation of Total Nucleic Acids from E. coli for Multi-purpose Applications

  • Cheng, Lin;Li, Tai-Yuan;Zhang, Yi
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.351-355
    • /
    • 2004
  • Separate protocols are commonly used to prepare plasmid DNA, chromosomal DNA, or total RNA from E. coli cells. Various methods for the rapid preparation of plasmid DNA have been developed previously, but the preparation of the chromosomal DNA and total RNA are usually laborious. We report here a simple, fast, reliable, and cost-effective method to extract total nucleic acids from E. coli by direct lysis of the cells with phenol. Five distinct and sharp bands, which correspond to chromosomal DNA, plasmid DNA, 23S rRNA, 16S rRNA, and a mixture of small RNA, were observed when analyzing the prepared total nucleic acids on a regular 1-2% agarose gel. The simple and high-quality preparation of the total nucleic acids in a singe tube allowed us to rapidly screen the recombinant plasmid, as well as to simultaneously monitor the change of the plasmid copy number and rRNA levels during the growth of E. coli in the liquid medium.

Growth conditions of symbiosis for production of single cell protein (단세포단백질 생산을 위한 혼합배양의 생육조건)

  • Lee, Hae-Kyoung;Chung, Yung-Gun;Kwon, Oh-Jin
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.343-348
    • /
    • 1996
  • Experiments were carried out to find possibility of economic production of SCP in mixed culture by Cellulomonas sp. KL-6 and E. coli LI-10. The best cell growth was obtained at the ratio of 1 : 1(v/v) in mixed culture. When these strains were mixed culture, cell growth was increased to about 63%, compared with those of single culture of strain KL-6. It was found that the majority of the population during growth in mixed culture consisted of strain KL-6. $CaCO_3$ added to the medium as the ratio of 0.1% was enhanced medium pH. Cell growth increased in that circumstances. These strains produced much amounts of cellobiose, but glucose was not detected in filter paper medium. When these organisms were cultured under the optimal medium for 4 days, cell mass was produced $1.0\;g/{\ell}$. The results showed the increase of cell mass up to 53% than those produced in CMC medium.

  • PDF

Enhanced Activity of Phenylalanine Ammonia Lyase in Permeabilised Recombinant E. coli by Response Surface Method

  • Cui, Jian-dong;Li, Yan;Jia, Shi-Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.494-499
    • /
    • 2009
  • To improve phenylalanine ammonia lyase (E.C.4.3.1.5-PAL) activity in recombinant Escherichia coli, Some approaches for improving phenylalanine ammonia lyase (PAL) activity in recombinant E. coli were developed following preliminary studies by means of response surface method. The results shown that permeabilization with combination of Triton X-100, cetyl trimethyl ammonium bromide (CTAB), and acetone enriched cellular recombinant PAL activity significantly, which improved over 10-fold as compared with the control (untreat cell), as high as 181.37 U/g. The optimum values for the tested variables were Triton X-100 0.108 g/L, CTAB 0.15 g/L, and acetone 45.2%(v/v). Furthermore, a second-order model equation was suggested and then validated experimentally. It was indicated that addition of surfactants and organic solvents made the cells more permeable and therefore allowed easier access of the substrate to the enzyme and excretion of the product, which increased the rate of transport of L-phenylalanine and trans-cinnamic acids. These improved methods of PAL activity enrichment could serve as a rich enzyme source, especially in the biosynthesis of L-phenylalanine.

Isolation and its effect of a second organism for single cell protein(SCP) production (세균 단세포단백질(SCP) 생산을 위한 보조균주의 분리와 그 효과)

  • 권오진;양성호
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.10-18
    • /
    • 1996
  • Experiments were carried out to find the possibility of an economic production of single cell protein(SCP) in mixed culture by Cellulomonas sp. KL-6 and a second organism. The second organism, strain LI-10, was isolated from the large intestines of a mouse. 1. When these strains were mixed, cell growth and carboxymethyl cellulase (CMCase) activity were increased to about 63% and 161%, respectively compared with that of single culture of strain KL-6. We found the mixed culture as a proper method of degradation of cellulose in our study. 2. Strain LI-10 was identified as E. coli. 3. This strain produced trace amounts of cellobiose, but glucose was not found in detectable amounts in the filter paper(FP) medium. 4. $CaCO_3$ injected in the medium at the ratio of 0.1% not only enhanced cell growth but also was effective as an acid neutralizing agent. 5. When this organism was cultured under the optimal medium (glucose 0.1%, $NH_4Cl$ 0.1%, yeast extract 2.0%, $KH_2PO_4$ 0.1%, KCl 0.05%, pH 7.2 and a temperature 30$\circ$C) for 5 days, a cell mass produced 1.18 g/l. The results showed the increase of cell mass up to 300% compared to 0.28 g/l produced in CMC medium.

  • PDF

The Stability, and Efficacy Against Penicillin-Resistant Enterococcus faecium, of the Plectasin Peptide Efficiently Produced by Escherichia coli

  • Chen, Xin;Wen, Yaoan;Li, Ling;Shi, Jiawei;Zhu, Zhe;Luo, Yuwen;Li, Yun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1007-1014
    • /
    • 2015
  • Plectasin, the first defensin extracted from a fungus (the saprophytic ascomycete Pseudoplectania nigrella), is attractive as a prospective antimicrobial agent. The purpose of this study was to establish a bacterium-based production system and evaluate the antimicrobial activity of the resulting plectasin. A gene encoding plectasin, with the codon preference of Escherichia coli, was optimized based on its amino acid sequence, synthesized using genesplicing with overlap extension PCR, and inserted into the expression vector pGEX-4T-1. The fusion protein was expressed in the soluble fraction of E. coli and purified using glutathione Stransferase affinity chromatography. Plectasin was cleaved from the fusion protein with thrombin and purified by ultrafiltration. The purified plectasin showed strong, concentrationdependent antimicrobial activity against gram-positive bacteria, including antibiotic-resistant bacteria, especially penicillin-resistant Enterococcus faecium. This antimicrobial activity was equal to chemically synthesized plectasin and was maintained over a wide range of pH and temperatures. This soluble recombinant expression system in E. coli is effective for producing plectasin at a relatively lower cost, and higher purity and efficiency than prior systems, and might provide a foundation for developing a large-scale production system. Overall, plectasin shows potential as a novel, high-performance, and safe antibiotic for the treatment of refractory diseases caused by drug-resistant bacterial strains.

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine

  • Li, Wenyu;Yin, Fan;Bu, Zixuan;Liu, Yuying;Zhang, Yongqing;Chen, Xiabing;Li, Shaowen;Li, Lu;Zhou, Rui;Huang, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.278-286
    • /
    • 2022
  • Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.