• Title/Summary/Keyword: E-convex

Search Result 195, Processing Time 0.031 seconds

A CHARACTERIZATION OF ELLIPTIC HYPERBOLOIDS

  • Kim, Dong-Soo;Son, Booseon
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.37-49
    • /
    • 2013
  • Consider a non-degenerate open convex cone C with vertex the origin in the $n$2-dimensional Euclidean space $E^n$. We study volume properties of strictly convex hypersurfaces in the cone C. As a result, for example, if the volume of the region of an elliptic cone C cut off by the tangent hyperplane P of M at $p$ is independent of the point $p{\in}M$, then it is shown that the hypersurface M is part of an elliptic hyperboloid.

An Algorithm for Generating the Umbra from a Convex Quadric Light Source (볼록 이차 광원으로부터 완전음영부를 생성하는 알고리즘)

  • Yoo, Kwan-Hee;Shin, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.541-548
    • /
    • 2000
  • An area light source in the three dimensional space shines past a scene polygon, to generate two types of shadow volumes for each scene polygon, i.e., one with partial occlusion and the other with the complete occlusion. These are called, penumbra and umbra, respectively. In this paper, consider the problem for computing the umbra of a convex polygon from convex quadric light sources such as circles, ellipses, spheres, ellipsoids and cylinders. First, we give characteristics of the boundary surfaces of the umbra and then propose an algorithm for generating the umbra using them.

  • PDF

Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV (컨벡스 최적화 기법 기반 전기추진 수직이착륙 무인기의 추진 시스템 고장 대처를 위한 회전익 모드 믹서 설계)

  • Jung, Yeondeuk;Choi, Hyungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.691-701
    • /
    • 2020
  • An actuator mixer design using convex optimization technique situation where the propulsion system of an electric VTOL UAV during vertical take-off and landing maneuvers is proposed. The attainable control set to analyze the impact from failure of each motor and propeller can be calculated and illustrated using the properties of the convex function. The control allocation can be defined as a convex function optimization problem to obtain an optimal solution in real time. The mixer is implemented using a convex optimization solver, and the performance of the control allocation methods is compared to the attainable control set. Finally, the proposed mixer is compared with other techniques with nonlinear sux degree-of-freedom simulation.

ULTRAPRODUCTS OF LOCALLY CONVEX SPACES

  • Kang, Si-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.189-196
    • /
    • 1990
  • In this paper, we try to generalize ultraproducts in the category of locally convex spaces. To do so, we introduce D-ultracolimits. It is known [7] that the topology on a non-trivial ultraproduct in the category T $V^{ec}$ of topological vector spaces and continuous linear maps is trivial. To generalize the category Ba $n_{1}$ of Banach spaces and linear contractions, we introduce the category L $C_{1}$ of vector spaces endowed with families of semi-norms closed underfinite joints and linear contractions (see Definition 1.1) and its subcategory, L $C_{2}$ determined by Hausdorff objects of L $C_{1}$. It is shown that L $C_{1}$ contains the category LC of locally convex spaces and continuous linear maps as a coreflective subcategory and that L $C_{2}$ contains the category Nor $m_{1}$ of normed linear spaces and linear contractions as a coreflective subcategory. Thus L $C_{1}$ is a suitable category for the study of locally convex spaces. In L $C_{2}$, we introduce $l_{\infty}$(I. $E_{i}$ ) for a family ( $E_{i}$ )$_{i.mem.I}$ of objects in L $C_{2}$ and then for an ultrafilter u on I. we have a closed subspace $N_{u}$ . Using this, we construct ultraproducts in L $C_{2}$. Using the relationship between Nor $m_{1}$ and L $C_{2}$ and that between Nor $m_{1}$ and Ba $n_{1}$, we show thatour ultraproducts in Nor $m_{1}$ and Ba $n_{1}$ are exactly those in the literatures. For the terminology, we refer to [6] for the category theory and to [8] for ultraproducts in Ba $n_{1}$..

  • PDF

COMPUTATION OF TOTAL CHROMATIC NUMBER FOR CERTAIN CONVEX POLYTOPE GRAPHS

  • A. PUNITHA;G. JAYARAMAN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.567-582
    • /
    • 2024
  • A total coloring of a graph G is an assignment of colors to the elements of a graphs G such that no adjacent vertices and edges receive the same color. The total chromatic number of a graph G , denoted by χ''(G), is the minimum number of colors that suffice in a total coloring. In this paper, we proved the Behzad and Vizing conjecture for certain convex polytope graphs Dpn, Qpn, Rpn, En, Sn, Gn, Tn, Un, Cn,respectively. This significant result in a graph G contributes to the advancement of graph theory and combinatorics by further confirming the conjecture's applicability to specific classes of graphs. The presented proof of the Behzad and Vizing conjecture for certain convex polytope graphs not only provides theoretical insights into the structural properties of graphs but also has practical implications. Overall, this paper contributes to the advancement of graph theory and combinatorics by confirming the validity of the Behzad and Vizing conjecture in a graph G and establishing its relevance to applied problems in sciences and engineering.

Some Notes on Lp-metric Space of Fuzzy Sets

  • Kim, Yun-Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.242-246
    • /
    • 2010
  • It is well-known that the space $E^n$ of fuzzy numbers(i.e., normal, upper-semicontinuous, compact-supported and convex fuzzy subsets)in the n-dimensional Euclidean space $R^n$ is separable but not complete with respect to the $L_p$-metric. In this paper, we introduce the space $F_p(R^n)$ that is separable and complete with respect to the $L_p$-metric. This will be accomplished by assuming p-th mean bounded condition instead of compact-supported condition and by removing convex condition.

Analysis of Fourier-transform Holographic Kinoforms Using Exact Ray Tracing (엄밀한 광선추적법에 의한 푸리에변환 holographic kinoform의 분석)

  • 조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.390-396
    • /
    • 1993
  • When a one-dimensional telecentric paraxial holographic kinoform is used as a Fourier transform lens, we analyzed three surface-relief structures, i.e., plano-convex, convex-plano and biconvex shapes, employing exact raytracing method based on Snell's law. For the kinoform of E/8 and focal length of 15 mm, the number of zones, the thickness, and the slope of parabolic surfaces are varied by changing the refractive indicies of kinoform material and surrounding medium. It is found that biconvex shape gives the best results in general, although off-axis performance degrades in all cases as the slope of parabolic surfaces increases.

  • PDF

ON FUNCTIONS STARLIKE WITH RESPECT TO n-PLY SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS

  • Malik, Somya;Ravichandran, Vaithiyanathan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1025-1039
    • /
    • 2022
  • For given non-negative real numbers 𝛼k with ∑mk=1 𝛼k = 1 and normalized analytic functions fk, k = 1, …, m, defined on the open unit disc, let the functions F and Fn be defined by F(z) := ∑mk=1 𝛼kfk(z), and Fn(z) := n-1n-1j=0 e-2j𝜋i/nF(e2j𝜋i/nz). This paper studies the functions fk satisfying the subordination zf'k(z)/Fn(z) ≺ h(z), where the function h is a convex univalent function with positive real part. We also consider the analogues of the classes of starlike functions with respect to symmetric, conjugate, and symmetric conjugate points. Inclusion and convolution results are proved for these and related classes. Our classes generalize several well-known classes and the connections with the previous works are indicated.

NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS

  • Park, Sehie;Kim, Ilhyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.139-149
    • /
    • 1989
  • pp.Hartman and G. Stampacchia [6] proved the following theorem in 1966: If f:X.rarw. $R^{n}$ is a continuous map on a compact convex subset X of $R^{n}$ , then there exists $x_{0}$ ..mem.X such that $x_{0}$ , $x_{0}$ -x>.geq.0 for all x.mem.X. This remarkable result has been investigated and generalized by F.E. Browder [1], [2], W. Takahashi [9], S. Park [8] and others. For example, Browder extended this theorem to a map f defined on a compact convex subser X of a topological vector space E into the dual space $E^{*}$; see [2, Theorem 2]. And Takahashi extended Browder's theorem to closed convex sets in topological vector space; see [9, Theorem 3]. In Section 2, we obtain some variational inequalities, especially, generalizations of Browder's and Takahashi's theorems. The generalization of Browder's is an earlier result of the first author [8]. In Section 3, using Theorem 1, we improve and extend some known fixed pint theorems. Theorems 4 and 8 improve Takahashi's results [9, Theorems 5 and 9], respectively. Theorem 4 extends the first author's fixed point theorem [8, Theorem 8] (Theorem 5 in this paper) which is a generalization of Browder [1, Theroem 1]. Theorem 8 extends Theorem 9 which is a generalization of Browder [2, Theorem 3]. Finally, in Section 4, we obtain variational inequalities for multivalued maps by using Theorem 1. We improve Takahashi's results [9, Theorems 21 and 22] which are generalization of Browder [2, Theorem 6] and the Kakutani fixed point theorem [7], respectively.ani fixed point theorem [7], respectively.

  • PDF

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF