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COMPUTATION OF TOTAL CHROMATIC NUMBER

FOR CERTAIN CONVEX POLYTOPE GRAPHS

A. PUNITHA AND G. JAYARAMAN∗

Abstract. A total coloring of a graph G is an assignment of colors to the

elements of a graphs G such that no adjacent vertices and edges receive
the same color. The total chromatic number of a graph G , denoted by

χ′′(G), is the minimum number of colors that suffice in a total coloring. In
this paper, we proved the Behzad and Vizing conjecture for certain convex

polytope graphs Dp
n, Q

p
n, R

p
n, En, Sn, Gn, Tn, Un, Cn,respectively. This

significant result in a graph G contributes to the advancement of graph the-
ory and combinatorics by further confirming the conjecture’s applicability

to specific classes of graphs. The presented proof of the Behzad and Vizing

conjecture for certain convex polytope graphs not only provides theoreti-
cal insights into the structural properties of graphs but also has practical

implications. Overall, this paper contributes to the advancement of graph

theory and combinatorics by confirming the validity of the Behzad and
Vizing conjecture in a graph G and establishing its relevance to applied

problems in sciences and engineering.

AMS Mathematics Subject Classification : 05C15.
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1. Introduction

Let a graph G be finite and undirected with no loops or multiple edges. If
each vertex in V (G) has a degree d, the graph G is called a d -regular graph. In
recent years, the study of total coloring in graphs has found important applica-
tions in various scientific and engineering domains. The total chromatic number,
denoted as χ′′(G), provides a valuable measure for scheduling and resource allo-
cation problems in parallel computing, wireless networks, and telecommunication
systems. By assigning distinct colors to vertices and edges such that adjacent
elements receive different colors, total coloring ensures the efficient utilization of
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resources and minimizes interference or conflicts. In this paper, we focus on the
Behzad [2] and Vizing [15] conjecture, a fundamental problem in graph theory
with practical implications. The conjecture proposes a relationship between the
total chromatic number of a graph and its maximum degree, stating thatχ′′(G)
is either equal to the maximum degree or the maximum degree plus one. Vali-
dating this conjecture for specific classes of graphs is of great significance, as it
not only sheds light on the fundamental properties of graphs but also contributes
to the development of efficient resource allocation strategies in real-world appli-
cations.
A graph of a convex polytope is formed from its vertices and edges having the
same incidence relation. Graphs of convex polytopes were first examined by
Baca [9]. He studies graceful and anti-graceful labeling problems for these ge-
ometrically important graphs. All the graphs considered here are finite, simple
and undirected. let (V (G), E(G)) be a graph with set of vertices V (G) and edges
E(G) respectively. A total coloring of G is a mapping f : V (G) ∪ E(G) → C,
where C is the set of colors, satisfying the following three conditions (i)− (iii).

i) f(u) ̸= f(v) for any two adjacent vertices u, v ∈ V (G),

ii) f(e) ̸= f(e
′
) for any adjacent edges e, e

′ ∈ E(G),
iii) f(v) ̸= f(e) for any vertex v ∈ V (G) and edges e ∈ E(G) incident to v.
The total chromatic number of a graph G denoted by χ′′(G), is the minimum

number of colors that suffice in a total coloring. It is clear that χ′′(G) ≤ ∆(G)+1,
where ∆(G) is the maximum degree of G. Behzad[2] and Vizing[15] conjectured
that for every graph G,∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2. If a graph G is to-
tal colorable with ∆(G) + 1 colors then the graph is called Type-I, and if it is
total colorable with ∆(G) + 2 colors but not ∆(G) + 1 colors, then it is Type
- II. A graph G is said to be total colorable if the elements of G are colored
with atmost ∆(G) + 2 colors. This conjecture was verified by Rosenfeld[13] and
Vijayaditya[14] for ∆(G) = 3 and by by Kostochka[6, 7] for ∆(G) ≤ 5. For
planar graphs, the conjecture was verified by Borodin[4] for ∆(G) ≥ 9. In 1992,
Yap and Chew [17] proved that any graph G has total coloring with at most
∆(G)+2 colors if ∆(G) ≥ |V (G)| − 5, where |V (G)| is the number of vertices in
G. Muthuramakrishnan and Jayaraman[12] proved that total chromatic number
of twig graph, splitting graph of comb graph and shadow graph of comb graph.
In [10] the concept of total chromatic number is applied in complier optimization,
register allocation is the process of assigning local automatic variables and ex-
pression results to a limited number of processor register. Other applications of
the graph coloring concern load balancing problems in multiprocessor machines
and results in probability theory (scheduling). Some applications establish the
added constraints. For instance, in scheduling problems, workloads, time charts
have to be allotted uniformly among the labourers without any chaos. This may
be modeled by a graph with elements like vertices and edges representing the
task assigned to completed and for every conflicting pair of tasks. Labourers
denoted by colors. Coloring of these graphs referred a valid allocation of tasks
to the labourers. In this paper, the total coloring conjecture is proved for convex
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polytope graph with certain pendent edges. Our work contributes to the grow-
ing body of research on regular graphs, which have been extensively studied in
various areas of mathematics, computer science, and engineering. The proper-
ties and structures of regular graphs make them particularly useful in modelling
and analyzing real-world systems, and our results showcase the power of regular
graphs in solving complex problems in applied mathematics and engineering.

2. Preliminaries

Definition 2.1. [10] The plane graph Dp
n (p from pendent) is obtained from

a graph of convex polytope D∗
n by attaching a pendent edges at each vertex of

outer cycle of D∗
n. So the graph Dp

n has the vertex set and the edge set given by
V (Dp

n) =
⋃n

i=1{ai; bi; ci; di; ei} and E(Dp
n) =

⋃n
i=1{aiai+1; bici; bi+1ci; didi+1;

aibi; cidi; diei} with 5n vertices and 7n edges respectively.

Definition 2.2. [10] The plane graph Qp
n(p from pendent) is obtained from

a graph of convex polytope Qn by attaching a pendent edges at each ver-
tex of outer cycle of graph of convex polytope graph Qn. So the graph Qp

n

has the vertex set and edge set given by V (Qp
n) =

⋃n
i=1{ai; bi; ci; di; ei} and

E(Qp
n) =

⋃n
i=1{aiai+1; bici; bi+1ci; didi+1; aibi; cidi; diei} with 4n vertices and

8n edges respectively.

Definition 2.3. [10] In the graph Rp
n(p from pendent) is obtained as a com-

bination of the graph, prism and the graph of an antiprism by attaching a
pendant edge at each vertex of outer cycle. We make the convention that
an+1 = a1, bn+1 = bn, cn+1 = c1 to simply the notation, we have V (Rp

n) =⋃n
i=1{ai; bi; ci; di} and E(Rp

n) =
⋃n

i=1{aiai+1; bibi+1; cici+1; cibi; aibi; biai+1; cidi}
with 4n vertices, 7n edges and the subscripts being taken modulo n.

Definition 2.4. [1] The En is the combination of convex polytope denoted as
Tn and An by adding new edges ai+1bi and having the same vertex V (En) and
E(En). The En consisting of 3−sided faces,5−sided faces and n−sided faces.

Definition 2.5. [12] The convex polytope Sn consists of 2n, 3− sided faces,
2n, 4− sided faces and a pair of n− sided faces, and is obtained by the combina-
tion of the graph of convex polytope Rn and the graph of a prism Dn. We have
V (Sn) = {ai; bi; ci; di : 1 ≤ i ≤ n} and E(Sn) = {aiai+1; bibi+1; cici+1; didi+1 :
1 ≤ i ≤ n} ∪ {ai+1bi; aibi; bici; cidi : 1 ≤ i ≤ n}.

Definition 2.6. [18] The convex polytope Gn consists of 2n, 3− sided faces,
2n, 4− sided faces and a pair of n− sided faces, and is obtained by the combina-
tion of the graph of convex polytope Rn and the graph of a prism Dn. We have
V (Gn) = {ai; bi; ci; di : 1 ≤ i ≤ n} and E(Gn) = {aiai+1; bibi+1; cici+1; didi+1 :
1 ≤ i ≤ n} ∪ {ai+1bi; aibi; bici; cidi : 1 ≤ i ≤ n}.

Definition 2.7. [12] The convex polytope Tn consists of 4n, 3− sided faces,
2n, 4− sided faces and a pair of n− sided faces, and is obtained by the combina-
tion of the graph of convex polytope Rn and the graph of a prism An. We have
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V (Tn) = {ai; bi; ci; di : 1 ≤ i ≤ n} and E(Tn) = {aiai+1; bibi+1; cici+1; didi+1 :
1 ≤ i ≤ n} ∪ {ai+1bi; aibi; bici; cidi; ci+1di : 1 ≤ i ≤ n}.

Definition 2.8. [12] The convex polytope Un consists of n, 4− sided faces,
2n, 5− sided faces and a pair of n− sided faces, and is obtained by the combina-
tion of the graph of convex polytope Dn and the graph of a prism Dn. We have
V (Un) = {ai; bi; ci; di; ei : 1 ≤ i ≤ n} and E(Un) = {aiai+1; bibi+1; eiei+1 : 1 ≤
i ≤ n} ∪ {aibi; bici; cidi; diei; ci+1di : 1 ≤ i ≤ n}.

Definition 2.9. [1] The graph of convex polytope Cn consists of 3n, 3− sided
faces,n, 4− sided faces, n, 5− sided faces and a pair of n− sided faces. There sets
of vertices V (Cn) and sets of edges E(Cn) are given us V (Cn) = {ai; bi; ci; di; ei :
1 ≤ i ≤ n} and E(Cn) = {aiai+1; bibi+1; didi+1; eiei+1 : 1 ≤ i ≤ n− 1} ∪
{aibi; bici; bi+1ci; cidi; diei; di+1ei : 1 ≤ i ≤ n− 1}.

3. Main results

Theorem 3.1. Let Dp
n be the plane graph with n pendent edges, then χ′′(Dp

n) =
5.

Proof. Let V (Dp
n) =

⋃n
i=1{ai; bi; ci; di; ei}. For instance, we call the cycle pro-

duced by {ai : 1 ≤ i ≤ n} be the a− cycle; the cycle is induced by {bi : 1 ≤ i ≤
n} ∪ {ci : 1 ≤ i ≤ n} be the b− cycle; cycle produced by {di : 1 ≤ i ≤ n}
be the outer cycle and the set of pendent vertices {ei : 1 ≤ i ≤ n}. Let

E(Dp
n) = {p(1)i ; p

(2)
i ; p

(3)
i ; p

(4)
i : 1 ≤ i ≤ n} ∪ {q(1)i ; q

(2)
i ; q

(3)
i : 1 ≤ i ≤ n}.

The outer cycle vertices {u1, u2, · · · un} are adjacent to each other and form a
cycle. Thus, they must have distinct colors from the total coloring concept.
The inner cycle vertices {v1, v2, · · · vn} also form a cycle and are adjacent to each
other. They must have distinct colors from the outer cycle vertices and, there-
fore, also have distinct colors among themselves. But the vertices {v2, v4, u2, u3}
dominated by v3, by the definition of independent dominating set choosing v3 is
not consideration, focussing on the minimum of an independent dominating set.
The edges E(Dp

n) are classified as:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n bici

p
(4)
i 1 ≤ i ≤ n cibi+1(modn)

q
(1)
i 1 ≤ i ≤ n cidi

q
(2)
i 1 ≤ i ≤ n didi+1(modn)

q
(3)
i 1 ≤ i ≤ n diei

Based on the total coloring conjecture, since χ′′(Dp
n) ≥ ∆(Dp

n) + 1 = 4 + 1 ≥ 5
then the lower bound of Dp

n is χ′′(Dp
n) ≥ 5. We now need to prove upper bound
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of total coloring conjecture of Dp
n is χ′′(Dp

n) ≤ 5. Define total coloring f, such
that f : V (Dp

n) ∪ E(Dp
n) → {1, 2, 3, 4, 5} as follows:

Case (i): when n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) = f(ci) =

{
2, if i is odd

1, if i is even
; f(di) =

{
1, if i is odd

2, if i is even
;

f(bi) = 3; f(ei) = 5
The edge coloring is formulated as follows:

(2) f(p
(1)
i ) =

{
3, if i is odd

4, if i is even
; f(p

(2)
i ) =

{
1, if i is odd

2, if i is even
;

f(q
(2)
i ) =

{
5, if i is odd

4, if i is even
; f(p

(3)
i ) = 4; f(p

(4)
i ) = 5; f(q

(1)
i ) = 3;

f(q
(3)
i ) =

{
2, if i is odd

1, if i is even

Case (ii): When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(ei), f(p
(1)
i ),

f(p
(2)
i ), f(p

(3)
i ), f(p

(4)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n− 1}, f(an) = f(dn) = 5, f(cn) = 2, f(en) = 1, f(p
(1)
n ) = 5,

f(p
(2)
1 ) = 2, f(p

(2)
n ) = 2, f(q

(2)
n ) = 4, f(q

(3)
n ) = 2. For i = n − 1, f(p

(2)
n−1) =

1, f(q
(2)
n−1) = 1, f(q

(3)
n−1) = 4, f(r

(2)
n−1) = 3. It is evident that χ′′(Dp

n) ≤ 5. We
can conclude that χ′′(Dp

n) = 5. □

Theorem 3.2. Let Qp
n be the plane graph with n pendent edges, then χ′′(Qp

n) =
6.

Proof. Let V (Qp
n) =

⋃n
i=1{ai; bi; ci; di; ei}. For instance, we call the cycle in-

duced by {ai : 1 ≤ i ≤ n} be the a−cycle; the cycle is induced by {bi : 1 ≤ i ≤ n}
be the b − cycle; set of vertices {ci : 1 ≤ i ≤ n} be the inner vertices; the cycle
induced by {di : 1 ≤ i ≤ n} be the d − cycle and the set of pendent vertices

{ei : 1 ≤ i ≤ n}. Let E(Qp
n) = {p(1)i ; p

(2)
i ; p

(3)
i : 1 ≤ i ≤ n} ∪ {q(1)i ; q

(2)
i ; q

(3)
i : 1 ≤

i ≤ n} ∪ {r(1)i ; r
(2)
i : 1 ≤ i ≤ n}

The edges E(Qp
n) are classified as:
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Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n bibi+1(modn)

q
(1)
i 1 ≤ i ≤ n bici

q
(2)
i 1 ≤ i ≤ n cibi+1(modn)

q
(3)
i 1 ≤ i ≤ n cidi

r
(1)
i 1 ≤ i ≤ n didi+1(modn)

r
(2)
i 1 ≤ i ≤ n diei

Based on the total coloring conjecture, since χ′′(Qp
n) ≥ ∆(Qp

n) + 1 = 5 + 1 ≥ 6
then the lower bound of Qp

n is χ′′(Qp
n) ≥ 6. We now need to prove upper bound

of total coloring conjecture of Qp
n is χ′′(Qp

n) ≤ 6. Define total coloring f, such
that f : V (Qp

n) ∪ E(Qp
n) → {1, 2, 3, 4, 5, 6} as follows:

when n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) = f(di) =

{
1, if i is odd

2, if i is even
; f(bi) =

{
2, if i is odd

1, if i is even
; f(ci) = 3;

f(ei) = 6
The coloring of edges is formulated as follows:

(2) f(p
(1)
i ) =

{
5, if i is odd

4, if i is even
; f(p

(2)
i ) = 3; f(q

(2)
i ) = 4; f(q

(3)
i ) = 5;

f(p
(3)
i ) =

{
5, if i is odd

6, if i is even
; f(q

(1)
i ) =

{
1, if i is odd

2, if i is even
;

f(r
(1)
i ) =

{
6, if i is odd

3, if i is even
; f(r

(2)
i ) = 4

When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(ei), f(p
(1)
i ), f(p

(2)
i ), f(p

(3)
i ),

f(p
(4)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), f(r

(1)
i ), f(r

(2)
i ), is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n− 1}. f(an) = 5, f(bn) = f(dn) = 4, f(p
(1)
n ) = 2, f(p

(3)
n ) = 1,

f(q
(1)
1 ) = 2, f(q

(1)
1 ) = 6, f(q

(2)
n ) = 4, f(q

(3)
n ) = 5, f(r

(1)
n ) = 3, f(r

(2)
n ) = 2. For

i = n − 1, f(q
(2)
n−1) = 5, f(q

(3)
n−1) = 4, f(r

(1)
n−1) = 1, f(r

(2)
n−1) = 3.For i = n − 2,

f(q
(1)
n−2) = 1, f(r

(2)
n−2) = 4. It is evident that χ′′(Qp

n) ≤ 6. We can conclude that
χ′′(Qp

n) = 6. □

Theorem 3.3. Let Rp
n be the plane graph with n pendent edges, then χ′′(Rp

n) =
6.

Proof. Let V (Rp
n) =

⋃n
i=1{ai; bi; ci; di}. For instance, we call the cycle induced

by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n} be
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the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n} be the outer cycle and
the set of vertices {di : 1 ≤ i ≤ n} be the pendant vertices.
Let E(Rp

n) = {p1i ; p2i : 1 ≤ i ≤ n} ∪ {q1i ; q2i : 1 ≤ i ≤ n} ∪ {r1i ; r2i ; r3i : 1 ≤ i ≤ n}
The edges classification as shown in the following table:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n bibi+1(modn)

q
(1)
i 1 ≤ i ≤ n aibi

q
(2)
i 1 ≤ i ≤ n biai+1(modn)

r
(1)
i 1 ≤ i ≤ n bici

r
(2)
i 1 ≤ i ≤ n cici+1(modn)

r
(3)
i 1 ≤ i ≤ n cidi

Based on the total coloring conjecture, since χ′′(Rp
n) ≥ ∆(Rp

n)+ 1 = 5+1 ≥ 6,
then the lower bound of Rp

n is χ′′(Rp
n) ≥ 6. We now need to prove upper bound

of total coloring conjecture of Rp
n is χ′′(Rp

n) ≤ 6. Define total coloring f, such
that f : V (Rp

n) ∪ E(Rp
n) → {1, 2, 3, 4, 5, 6} as follows:

Case(i):When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) =

{
1, if i is odd

2, if i is even
; f(bi) =

{
4, if i is odd

5, if i is even
;

f(ci) =

{
1, if i is odd

2, if i is even
; f(di) = 6

The coloring of edges is formulated as follows:

(2) f(p
(1)
i ) =

{
5, if i is odd

4, if i is even
; f(p

(2)
i ) =

{
1, if i is odd

2, if i is even
;

f(q
(1)
i ) = 6; f(q

(2)
i ) = 3; f(r

(1)
i ) =

{
5, if i is odd

4, if i is even
;

f(r2i ) =

{
6, if i is odd

3, if i is even
; f(r

(3)
i ) =

{
2, if i is odd

1, if i is even

Case(ii): When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(p
(1)
i ), f(p

(2)
i ), f(q

(1)
i ),

f(q
(2)
i ), f(r

(1)
i ), f(r

(2)
i ), f(r

(3)
i ) is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n− 1}. f(an) = f(cn) = 4, f(bn) = 2, f(p
(1)
n ) = 2, f(p

(2)
1 ) = 2,

f(p
(2)
n ) = 1, f(r

(1)
n ) = 5, f(r

(2)
n ) = 3, f(r

(3)
n ) = 1. For i = n − 1, f(p

(1)
n−1) = 1,

f(p
(2)
n−1) = 4, f(r

(1)
n−1) = 1, f(r

(2)
n−1) = 6, f(r

(3)
n−1) = 3. For i = n − 2, then
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f(r
(2)
n−2) = 4. It is evident that χ′′(Rp

n) ≤ 6. We can conclude that χ′′(Rp
n) =

6. □

Theorem 3.4. Let En denotes the graph of convex polytope, then χ′′(En) = 7.

Proof. Let V (En) =
⋃n

i=1{ai; bi; ci; di; ei}. For instance, we call the cycle in-
duced by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n}
be the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n}, the cycle produced
by {di : 1 ≤ i ≤ n} be the cycle and the set of vertices {ei : 1 ≤ i ≤ n} be the

outer cycle. Let E(En) = {p(1)i ; p
(2)
i ; p

(3)
i ; p

(4)
i : 1 ≤ i ≤ n} ∪ {q(1)i ; q

(2)
i ; q

(3)
i ; q

(4)
i :

1 ≤ i ≤ n} ∪ {r(1)i ; r
(2)
i ; r

(3)
i : 1 ≤ i ≤ n}

The edges classification is shown in the following table:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n biai+1(modn)

p
(4)
i 1 ≤ i ≤ n bibi+1(modn)

q
(1)
i 1 ≤ i ≤ n cibi

q
(2)
i 1 ≤ i ≤ n cibi+1(modn)

q
(3)
i 1 ≤ i ≤ n cidi

q
(4)
i 1 ≤ i ≤ n didi+1(modn)

r
(1)
i 1 ≤ i ≤ n diei

r
(2)
i 1 ≤ i ≤ n eidi+1(modn)

r
(3)
i 1 ≤ i ≤ n eiei+1(modn)

Based on the total coloring conjecture, since χ′′(En) ≥ ∆(En) + 1 = 6 + 1 ≥ 7
then the lower bound of En is χ′′(En) ≥ 7. We now need to prove upper bound
of total coloring conjecture of En is χ′′(En) ≤ 7. Define total coloring f, such
that f : V (En) ∪ E(En) → {1, 2, 3, 4, 5, 6, 7} as follows:
Case(i):When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) = f(di)

{
1, if i is odd

2, if i is even
; f(bi) =

{
4, if i is odd

5, if i is even
;

f(ei) =

{
7, if i is odd

6, if i is even
; f(ci) = 3.

The coloring of edges is formulated as follows:

(2) f(p
(1)
i ) =

{
5, if i is odd

4, if i is even
; f(p

(2)
i ) = 6; f(p

(3)
i ) = 3;
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f(p
(4)
i ) =

{
2, if i is odd

1, if i is even
; f(q

(1)
i ) = 7; f(q

(2)
i ) =

{
4, if i is odd

5, if i is even
;

f(q
(3)
i ) =

{
2, if i is odd

1, if i is even
; f(q

(4)
i ) =

{
7, if i is odd

6, if i is even
; f(r

(1)
i ) = 5;

f(r
(2)
i ) = 4; f(r

(3)
i ) =

{
2, if i is odd

3, if i is even

Case(ii): When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(ei), f(p
(1)
i ),

f(p
(2)
i ), f(p

(3)
i ), f(p

(4)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), f(q

(4)
i ), f(r

(1)
i ), f(r

(2)
i ), f(r

(3)
i ) is

given in equation (1) and (2), for i ∈ {1, 2, . . . , n − 1}. f(an) = f(dn) = 4,

f(bn) = 2, f(en) = 6, f(p
(1)
n ) = 2, f(p

(4)
n ) = 1, f(q

(2)
n ) = 5, f(q

(3)
n ) = 2,

f(q
(4)
n ) = 3, f(r

(2)
n ) = 4, f(r

(3)
n ) = 3. For i = n − 1, f(en−1) = 3, f(p

(1)
n−1) =

1, f(p
(4)
n−1) = 4, f(r

(2)
n−1) = 7, f(r

(3)
n−1) = 2. For i = n − 2, then f(r

(3)
n−2) = 1. For

i = n − 3, then f(p
(1)
n−3) = 4. It is evident that χ′′(En) ≤ 7. We can conclude

that χ′′(En) = 7. □

Theorem 3.5. Let Sn denotes the graph of convex polytope, then χ′′(Sn) = 6.

Proof. Let V (Sn) =
⋃n

i=1{ai; bi; ci; di}. For instance, we call the cycle induced
by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n} be
the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n} be the inner cycle and the

set of vertices {di : 1 ≤ i ≤ n} be the outer cycle. Let E(Sn) = {p(1)i ; p
(2)
i ; p

(3)
i :

1 ≤ i ≤ n} ∪ {q(1)i ; q
(2)
i ; q

(3)
i : 1 ≤ i ≤ n} ∪ {r(1)i ; r

(2)
i : 1 ≤ i ≤ n}.

The edges classification is shown in the following table:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n bibi+1(modn)

q
(1)
i 1 ≤ i ≤ n cibi

q
(2)
i 1 ≤ i ≤ n cibi+1(modn)

q
(3)
i 1 ≤ i ≤ n cici+1(modn)

r
(1)
i 1 ≤ i ≤ n cidi

r
(2)
i 1 ≤ i ≤ n didi+1(modn)

Based on the total coloring conjecture, since χ′′(Sn) ≥ ∆(Sn) + 1 = 5 + 1 ≥ 6
then the lower bound of Sn is χ′′(Sn) ≥ 6. We now need to prove upper bound
of total coloring conjecture of Sn is χ′′(Sn) ≤ 6. Define total coloring f, such
that f : V (Sn) ∪ E(Sn) → {1, 2, 3, 4, 5, 6} as follows:
Case(i): When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
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For 1 ≤ i ≤ n

(1) f(ai) = f(ci)

{
1, if i is odd

2, if i is even
; f(bi) = f(di)

{
4, if i is odd

3, if i is even
;

The coloring of edges is formulated as follows:

(2) f(p
(1)
i ) =

{
5, if i is odd

6, if i is even
; f(p

(2)
i ) =

{
3, if i is odd

4, if i is even
;

f(p
(3)
i ) =

{
1, if i is odd

2, if i is even
; f(q

(1)
i ) = 5; f(q

(2)
i ) = 6;

f(q
(3)
i ) =

{
4, if i is odd

3, if i is even
; f(r

(1)
i ) =

{
2, if i is odd

1, if i is even
;

f(r
(2)
i ) =

{
5, if i is odd

6, if i is even

Case(ii): When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(p
(1)
i ), f(p

(2)
i ),

f(p
(3)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), f(r

(1)
i ), f(r

(2)
i ), is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n − 1}, f(an) = 5, f(b1) = 2, f(bn) = 1, f(cn) = 4, f(dn) =

5, f(p
(1)
n ) = 2, f(p

(2)
n ) = 3, f(p

(3)
n ) = 4, f(q

(3)
n ) = 2, f(r

(1)
1 ) = 3, f(r

(1)
n ) =

1, f(r
(2)
n ) = 2. For i = n − 1, f(bn−1) = 3. It is evident that χ′′(Sn) ≤ 6.

We can conclude that χ′′(Sn) = 6. □

Theorem 3.6. Let Tn denotes the graph of convex polytope, then χ′′(Tn) = 7.

Proof. Let V (Tn) =
⋃n

i=1{ai; bi; ci; di}. For instance, we call the cycle induced
by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n} be
the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n} be the inner cycle and the

set of vertices {di : 1 ≤ i ≤ n} be the outer cycle. Let E(Tn) = {p(1)i ; p
(2)
i ; p

(3)
i :

1 ≤ i ≤ n} ∪ {q(1)i ; q
(2)
i ; q

(3)
i : 1 ≤ i ≤ n} ∪ {r(1)i ; r

(2)
i : 1 ≤ i ≤ n}

The edges classification is shown in the following table:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n ai+1(modn)bi

q
(1)
i 1 ≤ i ≤ n bibi+1(modn)

q
(2)
i 1 ≤ i ≤ n cibi

q
(3)
i 1 ≤ i ≤ n cibi+1(modn)

r
(1)
i 1 ≤ i ≤ n cidi

r
(2)
i 1 ≤ i ≤ n didi+1(modn)
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Based on the total coloring conjecture, since χ′′(Tn) ≥ ∆(Tn) + 1 = 6 + 1 ≥ 7
then the lower bound of Tn is χ′′(Tn) ≥ 7. We now need to prove upper bound
of total coloring conjecture of Tn is χ′′(Tn) ≤ 7. Define total coloring f, such
that f : V (Tn) ∪ E(Tn) → {1, 2, 3, 4, 5, 6, 7} as follows:
Case(i): When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) =

{
1, if i is odd

2, if i is even
; f(bi) =

{
4, if i is odd

7, if i is even
;

f(ci) = 3; f(di) =

{
5, if i is odd

4, if i is even

The coloring of edges is formulated as follows:

(2) f(p
(1)
i ) =

{
3, if i is odd

4, if i is even
; f(p

(2)
i ) = 6; f(p

(3)
i ) = 5;

f(q
(1)
i ) =

{
2, if i is odd

3, if i is even
; f(q

(2)
i ) = 1; f(q

(3)
i ) =

{
4, if i is odd

7, if i is even
;

f(r
(1)
i ) = 2; f(r

(2)
i ) =

{
6, if i is odd

7, if i is even

Case(ii): When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(p
(1)
i ), f(p

(2)
i ),

f(p
(3)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), f(r

(1)
i ), f(r

(2)
i ), is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n − 1}, f(an) = 5, f(bn) = 7, f(cn) = 3, f(dn) = 4, f(p
(1)
n ) =

2, f(q
(1)
n ) = 3, f(q

(2)
n ) = 2, f(q

(3)
n ) = 7, f(r

(1)
n ) = 1, f(r

(2)
n ) = 3. For i = n −

1, f(bn−1) = 3, f(cn−1) = 1, f(dn−1) = 3, f(q
(1)
n−1) = 1, f(q

(2)
n−1) = 7, f(q

(3)
n−1) =

4, f(r
(1)
n−1) = 2. It is evident that χ′′(Tn) ≤ 7. We can conclude that χ′′(Tn) =

7. □

Theorem 3.7. Let Gn denotes the graph of convex polytope, then χ′′(Gn) = 5.

Proof. Let V (Gn) =
⋃n

i=1{ai; bi; ci; di; ei}. For instance, we call the cycle in-
duced by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n}
be the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n}, the cycle produced
by {di : 1 ≤ i ≤ n} be the cycle and the set of vertices {ei : 1 ≤ i ≤ n} be the

outer cycle. Let E(Gn) = {p(1)i ; p
(2)
i ; p

(3)
i : 1 ≤ i ≤ n} ∪ {q(1)i ; q

(2)
i ; q

(3)
i : 1 ≤ i ≤

n} ∪ {r(1)i ; r
(2)
i : 1 ≤ i ≤ n}

The edges classification is shown in the following table:



578 A. Punitha and G. Jayaraman

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n biai+1(modn)

q
(1)
i 1 ≤ i ≤ n bici

q
(2)
i 1 ≤ i ≤ n dici

q
(3)
i 1 ≤ i ≤ n dici+1(modn)

r
(1)
i 1 ≤ i ≤ n diei

r
(2)
i 1 ≤ i ≤ n eiei+1(modn)

Based on the total coloring conjecture, since χ′′(Gn) ≥ ∆(Gn) + 1 = 4 + 1 ≥ 5
then the lower bound of Tn is χ′′(Gn) ≥ 5. We now need to prove upper bound
of total coloring conjecture of Gn is χ′′(Gn) ≤ 5. Define total coloring f, such
that f : V (Gn) ∪ E(Gn) → {1, 2, 3, 4, 5} as follows:
Case(i): When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) =

{
1, if i is odd

2, if i is even
; f(bi) = 3; f(ci) = 1;

f(di) = 2; f(ei) =

{
3, if i is odd

4, if i is even
;

The coloring of edges is formulated as follows:

(2) f(p
(1)
i ) =

{
3, if i is odd

4, if i is even
; f(p

(2)
i ) = 5; f(p

(3)
i ) =

{
1, if i is odd

2, if i is even
;

f(q
(1)
i ) = 4; f(q

(2)
i ) = 3; f(q

(3)
i ) = 5; f(r

(1)
i ) = 1; f(r

(2)
i ) =

{
2, if i is odd

5, if i is even

Case(ii):When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(ei), f(p
(1)
i ), f(p

(2)
i ),

f(p
(3)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), f(r

(1)
i ), f(r

(2)
i ), is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n − 1}, f(an) = 3, f(bn) = 2, f(cn) = 1, f(dn) = 4, f(en) =

5, f(p
(1)
n ) = 5, f(p

(2)
n ) = 1, f(p

(3)
n ) = 4, f(q

(1)
n ) = 3, f(q

(2)
n ) = 3, f(r

(2)
n ) = 4. For

i = n − 1, f(bn−1) = 1, f(cn−1) = 3, f(dn−1) = 4, f(en−1) = 2, f(p
(2)
n−1) = 5,

f(q
(1)
n−1) = 4, f(q

(2)
n−1) = 2, f(r

(2)
n−1) = 3. For i = n − 2, f(dn−2) = 2, f(q

(2)
n−2) =

3, f(r
(2)
n−2) = 4. It is evident that χ′′(Gn) ≤ 5. We can conclude that χ′′(Gn) =

5. □

Theorem 3.8. Let Un denotes the graph of convex polytope, then χ′′(Un) = 5.

Proof. Let V (Un) =
⋃n

i=1{ai; bi; ci; di; ei}. For instance, we call the cycle induced
by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n} be
the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n}, the cycle produced by
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{di : 1 ≤ i ≤ n} be the cycle and the set of vertices {ei : 1 ≤ i ≤ n} be the outer
cycle.

Let E(Un) = {p(1)i ; p
(2)
i ; p

(3)
i : 1 ≤ i ≤ n} ∪ {q(1)i ; q

(2)
i ; q

(3)
i : 1 ≤ i ≤ n} ∪

{r(1)i ; r
(2)
i : 1 ≤ i ≤ n}

The edges classification is shown in the following table:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n bibi+1(modn)

q
(1)
i 1 ≤ i ≤ n bici

q
(2)
i 1 ≤ i ≤ n cidi

q
(3)
i 1 ≤ i ≤ n dici+1(modn)

r
(1)
i 1 ≤ i ≤ n diei

r
(2)
i 1 ≤ i ≤ n eiei+1(modn)

Based on the total coloring conjecture, since χ′′(Un) ≥ ∆(Un) + 1 = 4 + 1 ≥ 5
then the lower bound of Un is χ′′(Un) ≥ 5. We now need to prove upper bound
of total coloring conjecture of Un is χ′′(Un) ≤ 5. Define total coloring f, such
that f : V (Un) ∪ E(Un) → {1, 2, 3, 4, 5} as follows:
Case(i):When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) =

{
1, if i is odd

2, if i is even
; f(bi) =

{
2, if i is odd

1, if i is even
;

f(ci) = 3; f(di) = 1; f(ei) =

{
2, if i is odd

1, if i is even

(2) f(p
(1)
i ) =

{
3, if i is odd

4, if i is even
; f(p

(2)
i ) = 5; f(p

(3)
i ) =

{
3, if i is odd

4, if i is even
;

f(q
(1)
i ) =

{
1, if i is odd

2, if i is even
; f(q

(2)
i ) = 5; f(q

(3)
i ) = 4; f(r

(1)
i ) = 3;

f(r
(2)
i ) =

{
1, if i is odd

5, if i is even
.

Case(ii): When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(ei), f(p
(1)
i ), f(p

(2)
i ),

f(p
(3)
i ), f(q

(1)
i ), f(q

(2)
i ), f(q

(3)
i ), f(r

(1)
i ), f(r

(2)
i ), is given in equation (1) and (2),

for i ∈ {1, 2, . . . , n − 1}, f(an) = 3, f(b1) = 3, f(c1) = 2, f(dn) = 1, f(en) =

5, f(p
(1)
n ) = 2, f(p

(3)
1 ) = 2, f(q

(1)
2 ) = 4, f(q

(3)
1 ) = 2, f(q

(3)
n ) = 4, f(r

(2)
n ) = 4. For

i = n − 1, f(cn−1) = 3, f(q
(1)
n−1) = 2, f(r

(2)
n−1) = 2. For i = n − 2, f(r

(2)
n−2) = 1.
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For i = n− 3, f(r
(2)
n−3) = 5. It is evident that χ′′(Un) ≤ 5. We can conclude that

χ′′(Un) = 5. □

Theorem 3.9. Let Cn denotes the graph of convex polytope, then χ′′(Cn) = 6.

Proof. Let V (Cn) =
⋃n

i=1{ai; bi; ci; di; ei}. For instance, we call the cycle induced
by {ai : 1 ≤ i ≤ n} be the inner cycle; the cycle induced by {bi : 1 ≤ i ≤ n} be
the interior cycle; the cycle induced by {ci : 1 ≤ i ≤ n}, the cycle produced by
{di : 1 ≤ i ≤ n} be the cycle and the set of vertices {ei : 1 ≤ i ≤ n} be the outer

cycle. Let E(Cn) = {p(1)i ; p
(2)
i ; p

(3)
i : 1 ≤ i ≤ n} ∪ {q(1)i ; q

(2)
i ; q

(3)
i ; q

(4)
i : 1 ≤ i ≤

n} ∪ {r(1)i ; r
(2)
i ; r

(3)
i : 1 ≤ i ≤ n}

The edges classification is shown in the following table:

Edges Range of n Links between the vertices

p
(1)
i 1 ≤ i ≤ n aiai+1(modn)

p
(2)
i 1 ≤ i ≤ n aibi

p
(3)
i 1 ≤ i ≤ n bibi+1(modn)

q
(1)
i 1 ≤ i ≤ n bici

q
(2)
i 1 ≤ i ≤ n cibi+1(modn)

q
(3)
i 1 ≤ i ≤ n cidi

q
(4)
i 1 ≤ i ≤ n didi+1(modn)

r
(1)
i 1 ≤ i ≤ n diei

r
(2)
i 1 ≤ i ≤ n eidi+1(modn)

r
(3)
i 1 ≤ i ≤ n eiei+1(modn)

Based on the total coloring conjecture, since χ′′(Cn) ≥ ∆(Cn) + 1 = 5 + 1 ≥ 6
then the lower bound of Cn is χ′′(Cn) ≥ 6. We now need to prove upper bound
of total coloring conjecture of Cn is χ′′(Cn) ≤ 6. Define total coloring f, such
that f : V (Cn) ∪ E(Cn) → {1, 2, 3, 4, 5, 6} as follows:
Case(i):When n ≡ 0 (mod 2)
The coloring of vertices is formulated as follows:
For 1 ≤ i ≤ n

(1) f(ai) =

{
1, if i is odd

2, if i is even
; f(bi) =

{
5, if i is odd

4, if i is even
;

f(ci) =

{
2, if i is odd

1, if i is even
; f(di) =

{
1, if i is odd

2, if i is even
; f(ei) =

{
4, if i is odd

5, if i is even

(2) f(p
(1)
i ) =

{
3, if i is odd

4, if i is even
; f(p

(2)
i ) = 6; f(p

(3)
i ) =

{
1, if i is odd

2, if i is even
;

f(q
(1)
i ) = 3; f(q

(2)
i ) =

{
5, if i is odd

4, if i is even
; f(q

(3)
i ) =

{
4, if i is odd

5, if i is even
;
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f(q
(4)
i ) =

{
6, if i is odd

3, if i is even
; f(r

(1)
i ) =

{
5, if i is odd

4, if i is even
;

f(r
(2)
i ) =

{
1, if i is odd

2, if i is even
; f(r

(3)
i ) =

{
3, if i is odd

6, if i is even
.

Case(ii):When n ≡ 1 (mod 2) then f(ai), f(bi), f(ci), f(di), f(ei), f(p
(1)
i ), f(p

(2)
i ),

f(p
(3)
i ), f(q

(1)
i ),f(q

(2)
i ), f(q

(3)
i ), f(q

(4)
i ), f(r

(1)
i ), f(r

(2)
i ), f(r

(3)
i ),is given in equa-

tion (1) and (2), for i ∈ {1, 2, . . . , n − 1} f(an) = 3, f(bn) = 1, f(cn) = 4,

f(dn) = 2, f(en) = 5, f(p
(1)
n ) = 2, f(p

(3)
n ) = 4, f(q

(2)
n ) = 2, f(q

(3)
n ) = 5,

f(q
(4)
n ) = 3, f(r

(1)
n ) = 6, f(r

(2)
n ) = 2, f(r

(3)
n ) = 4. For i = n − 1, f(cn−1) = 2,

f(dn−1) = 3, f(en−1) = 4, f(q
(2)
n−1) = 5, f(q

(3)
n−1) = 4, f(q

(4)
n−1) = 1, f(r

(1)
n−1) = 5,

f(r
(2)
n−1) = 4. For i = n−2, f(r

(1)
n−2) = 5, f(r

(2)
n−2) = 2. For i = n−3, f(r

(1)
n−3) = 4.

It is evident that χ′′(Cn) ≤ 6. We can conclude that χ′′(Cn) = 6. □
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