• Title/Summary/Keyword: E-Mold

Search Result 341, Processing Time 0.038 seconds

Production of Surfactin and Iturin by Bacillus licheniformis N1 Responsible for Plant Disease Control Activity

  • Kong, Hyun-Gi;Kim, Jin-Cheol;Choi, Gyoung-Ja;Lee, Kwang-Youll;Kim, Hyun-Ju;Hwang, Eul-Chul;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.170-177
    • /
    • 2010
  • Bacillus licheniformis N1, previously developed as a biofungicide formulation N1E to control gray mold disease of plants, was investigated to study the bacterial traits that may be involved in its biological control activity. Two N1E based formulations, bacterial cell based formulation PN1E and culture supernatant based formulation SN1E, were evaluated for disease control activity against gray mold disease of tomato and strawberry plants. Neither PN1E nor SN1E was as effective as the original formulation N1E. Fractionation of antifungal compounds from the bacterial culture supernatant of B. licheniformis N1 indicated that two different cyclic lipopeptides were responsible for the antimicrobial activity of the N1 strain. These two purified compounds were identified as iturin A and surfactin by HPLC and LCMS. The purified lipopeptides were evaluated for plant disease control activity against seven plant diseases. Crude extracts and purified compounds applied at 500 ${\mu}g/ml$ concentration controlled tomato gray mold, tomato late blight and pepper anthracnose effectively with over 70% disease control value. While iturin showed broad spectrum activity against all tested plant diseases, the control activity by surfactin was limited to tomato gray mold, tomato late blight, and pepper anthracnose. Although antifungal compounds from B. licheniformis N1 exhibited disease control activity, our results suggested that bacterial cells present in the N1E formulation also contribute to the disease control activity together with the antifungal compounds.

Web-based Monitoring System for Mold Manufacturing Process by Indirect Measurement of Cutting Force (절삭력 간접 측정을 통한 웹기반 금형가공공정 감시 시스템)

  • Kim G. H.;Shin B. C.;Choi J. H.;Shin G. H.;Yoon G. S.;Cho M. W.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.82-88
    • /
    • 2006
  • In this paper, the web-based monitoring system is developed for the effective process monitoring of mold manufacturing using web. In developed system, the cutting force for monitoring the manufacturing condition is measured using hall-sensor that is low cost and useful to be installed in a machine tool indirectly. Specially, the current of main spindle in a machine tool is converted into cutting force by various experiments. For effective web-based monitoring, the program which runs in the local computer of client is made to exchange message between a server and a client by making of ActiveX control and the result of manufacturing is shown on web-browser by Ch language. The developed system in this study is the foundation of establishing E-manufacturing in mold factory.

Development of Partial Discharge Measuring Sensor and System for Mold Transformer (몰드변압기용 부분방전 측정 센서 및 시스템 개발)

  • Kang, D.S.;Sun, J.H.;Cho, K.H.;Lee, S.M.;Yun, Y.H.;Lee, D.Z.;Oeu, S.Y.;Kim, J.H.;Choi, K.N.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.99-102
    • /
    • 2005
  • In order to development of diagnosis system for mold transformer, partial discharge measurement technique is recommended the best effective method for the evaluation of insulation condition on high voltage winding part. However, this technique was not applied to mold transformer yet. The purpose of this paper is to describe the method of partial discharge measurement for mold transformer with coupling sensor and measuring system. As we reviewed and developed the on-line partial discharge test technique, ceramic coupling sensor, measuring system, terminal box and index parameters.

  • PDF

Measurement of temperature distribution of the stamper and estimation of injection-molded light guide panel performance in E-MOLD process (금형가열방식을 이용한 사출성형금형의 온도분포 측정과 E-MOLD금형을 이용한 도광판 사출품에 대한 성능 평가)

  • Kim, Young-Kyun;Kim, Dong-Hak
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.358-361
    • /
    • 2008
  • 본 논문에서는 열화상촬영기 및 온도분포 해석 프로그램을 이용하여 금형가열온도와 실제 금형온도의 온도편차를 비교하여 금형가열 시 Stamper 표면의 온도분포를 해석하였다. 또한 전열가열방식(E-MOLD)을 이용하여 복합기능 도광판(Prismless LGP)을 제조하였고, 금형온도에 따른 복합기능 도광판(Prismless LGP)의 광특성 평가를 하였다. 그 결과 금형온도가 증가할수록 패턴 전사성 향상으로 인해 휘도 또한 증가하였고, 특히 유리전이온도($140^{\circ}C$) 이상에서 크게 상승하였다.

  • PDF

Development of e-learning site for training human resource of a mold e-manufacturing (금형 e 매뉴팩처링 인력양성을 위한 e 러닝 사이트 개발)

  • Kim, Woo-Jae;Kim, Sung-Keol;Seo, Myeng-Min;Choi, Min-Soo;Kim, Hyun-Kyung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.9-13
    • /
    • 2007
  • 국내 금형 및 사출 제조업체들을 대상으로 경쟁력을 강화하기 위한 e-매뉴팩처링 인력양성이 필요한 실정이다. 본 연구에서는 금형 e-매뉴팩처링에 대한 교육을 위하여 e-러닝 사리트를 개발하고 이에 대한 교육 콘텐츠를 개발하였다. 금형 e-매뉴팩처링을 위한 e-러닝 싸이트는 교육 콘텐츠를 체계적으로 관리하고 수강할 수 있도록 LMS(Learning Management System)으로 개발하였다. 교육 콘텐츠로는 금형 e-매뉴팩처링 기본과점, UG-Mold Wirard 과정, UG-MX 중급과정, 금형 기술과정, 금형 협업허브시스템 사용자 교육과점 등을 개발하였다.

  • PDF

A Study on Lenticular Lens Mold Fabrication by Shaping (세이핑에 의한 렌티큘러 렌즈 금형 가공에 관한 연구)

  • Je T. J.;Lee E. S.;Shim Y. S.;Kim E. Z.;Na K. H.;Choi D. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.245-250
    • /
    • 2005
  • Recently, micro machining technology for high precision mold becomes more interested for mass production of high performance optical parts micro-grooved on the surface, which is under very active development due to its effectiveness in the view point of optical performance. Mechanical micro machining technology now has more competitiveness on lithography, MEMS or LIGA processes which have some problems to fabricate especially cylinder type of groove in such as lenticular lens for illumination angle modulation system. In this study. a lenticular lens mold with U-type micro groove is fabricated making utilizing of the benefit of the mechanical micro machining technology. A shaping machining process is adapted using 3 axis degree of freedom micro machining system and single crystal natural diamond tool. A brass and a electroless nickel materials are used for mold fabrication. Machining force, chip shape and machined surface are investigated from the experiment and an optimal machining condition is found based on the examined problems from the micro cutting process.

A Study on the Machining Characteristic of DLC Coated Mold Material Using FIB (FIB를 이용한 DLC소재의 가공공정에 관한 연구)

  • Hong, W.P.;Choi, B.Y.;Kang, E.G.;Lee, S.W.;Choi, H.Z.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis and IC error correction, etc. Currently, FIB is not being applied to the fabrication of the micro and nano-structured mold, because of low productivity. And also sputtering rate has been required to fabricate 3D shape. In the paper, we studied the FIB-Sputtering rate according to mold materials. And surface roughness characteristics had been analysed for micro or nano mold fabrication. Si wafer, Glassy Carbon, STAVAX and DLC that have been normally considered as good micro or nano mold materials were used in the study.

A study on PDMS mold fabrication using thermal embossing method (Thermal embossing 공정을 이용한 PDMS mold 제작에 관한 연구)

  • 김동학;유홍진;김창교;장석원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.223-226
    • /
    • 2004
  • Injection molding using plastic materials was expected to mass production of structure with nano pattern for low cost phase. The PDMS mold was produced easily and uniformly by using thermal embossing. Quartz master for embossing method was made using electron beam lithography it had 100-500 nm size of line and dot type. The PDMS mold was produced after a brief hardening process and the master removal. The results show that various patterns are successfully fabricated the nano scale.. The replicated mold would be useful a stamper fabrication for injection molding.

  • PDF

Prediction of Microshrinkage Porosity in Thin Al-alloy Permanent Mold Castings

  • Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1991
  • The proper feeding conditions for thin Al-Alloy (AA336, JIS AC8A) castings in permanent mold were investigated to eliminate microshrinkage porosity. 5mm-thick plates (200mm long, 60mm wide) were cast with increasing padding taper from 0 to 5% under different conditions : (1) constant mold temperature of $350^{\circ}C$, (2) continuous production with uniform mold thickness (10mm), (3) continuous production with a negative taper of 2.5% in mold thickness (thickness decreasing in direction to riser). The test casting were machined off to the midplane and the shrinkage porosity was examined visually. The critical padding taper which can just eliminate the shrinkage porosity was determined for each condition, i.e. : (1) 4.5% at the constant mold temperature, (2) 3.5% for continuous production with the uniform mold thickness (3) 1.5% for continuous production with the taper in mold thickness. A computer simulation by a finite difference analysis program was applied to the test casting. The liquid fraction gradient (LFG) and the temperature gradient divided by the square root of the cooling rate (G /SR) were calculated at the end of solidification and compared with the shrinkage porosity area in the castings. For the case of constant mold temperature, LFG is a better parameter to predict shrinkage porosity than G /SR and its critical value is around 11%/cm. But for the case of continuous production, neither LFG nor G /SR could be a reliable parameter. The experimental results about the critical padding taper are of practical interest for designing permanent molds and castings. The computer simulation results stimulate further research to be directed on the prediction of centerline microshrinkage porosity in continuous production.

  • PDF