• Title/Summary/Keyword: E-FGM

Search Result 47, Processing Time 0.024 seconds

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes (DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가)

  • Shin, G.;Choo, W.;Yoon, J.H.;Yang, S.Y.;Kim, J.H.
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.309-313
    • /
    • 2022
  • In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.

Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories

  • Youcef, Ali;Bourada, Mohamed;Draiche, Kada;Boucham, Belhadj;Bourada, Fouad;Addou, Farouk Yahia
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.237-264
    • /
    • 2020
  • This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing differential equations and boundary conditions of exponentially graded plates are derived by employing the static version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed load are obtained for simply supported boundary conditions using Navier'is solution procedure developed in the double Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation theories to verify the accuracy of the present theory.

Comparing the empirical powers of several independence tests in generalized FGM family

  • Zargar, M.;Jabbari, H.;Amini, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.215-230
    • /
    • 2016
  • The powers of some tests for independence hypothesis against positive (negative) quadrant dependence in generalized Farlie-Gumbel-Morgenstern distribution are compared graphically by simulation. Some of these tests are usual linear rank tests of independence. Two other possible rank tests of independence are locally most powerful rank test and a powerful nonparametric test based on the $Cram{\acute{e}}r-von$ Mises statistic. We also evaluate the empirical power of the class of distribution-free tests proposed by Kochar and Gupta (1987) based on the asymptotic distribution of a U-statistic and the test statistic proposed by $G{\ddot{u}}ven$ and Kotz (2008) in generalized Farlie-Gumbel-Morgenstern distribution. Tests of independence are also compared for sample sizes n = 20, 30, 50, empirically. Finally, we apply two examples to illustrate the results.

Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate

  • Rabia, Benferhat;Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.29-44
    • /
    • 2018
  • In this paper, a closed-form rigorous solution for interfacial shear stress in simply supported beams strengthened with bonded prestressed E-FGM plates and subjected to an arbitrarily positioned single point load, or two symmetric point loads is developed using linear elastic theory. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. The theoretical predictions are compared with other existing solutions. Finally, numerical results from the present analysis are presented to study the effects of various parameters of the beams on the distributions of the interfacial shear stresses. The results of this study indicated that the E-FGM plate strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM

  • Madenci, Emrah;Gulcu, Saban
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.633-642
    • /
    • 2020
  • Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.

Free vibration analysis of a sandwich cylindrical shell with an FG core based on the CUF

  • Foroutan, Kamran;Ahmadi, Habib;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.121-133
    • /
    • 2022
  • An analytical approach for the free vibration behavior of a sandwich cylindrical shell with a functionally graded (FG) core is presented. It is considered that the FG distribution is in the direction of thickness. The material properties are temperature-dependent. The sandwich cylindrical shell with a FG core is considered with two cases. In the first model, i.e., Ceramic-FGM-Metal (CFM), the interior layer of the cylindrical shell is rich metal while the exterior layer is rich ceramic and the FG material is located between two layers and for the second model i.e., Metal-FGM-Ceramic (MFC), the material distribution is in reverse order. This study develops Carrera's Unified Formulation (CUF) to analyze sandwich cylindrical shell with an FG core for the first time. Considering the Principle of Virtual Displacements (PVDs) according to the CUF, the dependent boundary conditions and governing equations are obtained. The coupled governing equations are derived using Galerkin's method. In order to validate the present results, comparisons are made with the available solutions in the previous researches. The effects of different geometrical and material parameters on the free vibration behavior of a sandwich cylindrical shell with an FG core are examined.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.

Dynamic response of imperfect functionally graded plates: Impact of graded patterns and viscoelastic foundation

  • Hafida Driz;Amina Attia;Abdelmoumen Anis Bousahla;Farouk Yahia Addou;Mohamed Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi;Mohammed Balubaid;S.R. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.551-565
    • /
    • 2024
  • This study presents a methodical investigation into improving structural designs through the analytical examination of the dynamic behavior of functionally graded plates (FGPs) resting on viscoelastic foundations. By employing a four variable first-order shear deformation theory, the study computes non-dimensional frequencies for a variety of porous FGPs with diverse graded patterns and porosity distributions. Different gradient patterns of the plates are considered, and three distinct functions-sigmoid (S-FGM), exponential (E-FGM), and power-law (P-FGM)-are utilized to assess material performance in specific directions. The equations of motion are derived and solved using both Navier's method and Hamilton's principle. Analytical solutions for vibration frequency are provided to validate the proposed methodology against existing literature. Furthermore, a comprehensive parametric analysis is conducted, taking into account various factors such as ceramic material, porosity distribution, gradient index, length-to-thickness ratio, gradient pattern, and damping coefficient. The findings suggest that enhancing the damping coefficient of the viscoelastic foundation can significantly improve the free-vibrational response of functionally graded material plates.

Analysis of Genetic Polymorphism by Bloodtyping in Jeju Horse (혈액형에 의한 제주말의 유전적 다형성 분석)

  • Cho Gil-Jae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.972-978
    • /
    • 2005
  • The present study was carried out to investigate the blood markers of Jeju horses. The redcell cypes (blood groups) and blood protein types (biochemical polymorphisms) were tested from 102 Jeju horses by serological and electrophoretc procedure, and their phenotypes and gene frequencies were estimated. The blood group and biochemical polymorphism phenotypes observed with high frequency were $A^{af}\;(27.45\%$), $C^{a}\;(99.02\%$), $K^{-}\;(97.06\%$), $U^{a}\;(62.75\%$), $P^{b}\;(36.27\%$), $Q^{c}\;(47.06\%$), $D^{cgm/dghm}\;(13.73\%$), $D^{adn/cgm}\;(9.80\%$), $D^{ad/cgm}$\;(8.82\%$), $D^{dghm/dghm}(7.84\%$), $D^{cgm/cgm}(7.84\%$), $AL^{B}\;(48.04\%$), $GC^{F}\;(99.02\%$), $AlB^{K}\;(97.06\%$), $ES^{FI}\;(36.27\%$), $TF^{F2}\;(25.49\%$), $HB^{B1}\;(45.10\%$), and $PGD^{F}\;(86.27\%$) in Jeju horses, respectively. Alleles observed with high gene frequency were $A^{af}$ (0.3726), $A^{C}$ (0.2647), $C^{-}$ (0.5050), $K^{-}$ (0.9853), $U^{-}$ (0.6863), $P^{b}$ (0.4657), $Q^{c}$ (0.5294), $D^{cgm}$ (0.3039), $HB^{B1}$(0.6863), $PGD^{F}$ (0.9265), $AL^{B}$ (0.6912), $ALB^{K}$ (0.9852), $GC^{F}$ (0.9950), $ES^{I}$ (0.5000) and $TF^{F2}$ (0.4950) in Jeju horses, and sfecific alleles, $D^{cgm(f)}$ (0.0196), $HB^{A}$ (0.0147), $HB^{A2}$ (0.0196), $ES^{G}$ (0.0441), $ES^{H}$ (0.0098), $TF^{E}$TF'(0.0246), $TF^{H2}$ (0.0049) and $PGD^{D}$ (0.0098) were detected in Jeju horses. These preliminary results present basic information for detecting the genetic markers in Jeju horse. and developing a system for parentage verification and individuals identification in jeju horses.