DOI QR코드

DOI QR Code

Free vibration analysis of a sandwich cylindrical shell with an FG core based on the CUF

  • Foroutan, Kamran (Faculty of Mechanical Engineering, Shahrood University of Technology) ;
  • Ahmadi, Habib (Faculty of Mechanical Engineering, Shahrood University of Technology) ;
  • Carrera, Erasmo (Mul2 Group, Department of Mechanical and Aerospace Engineering)
  • Received : 2020.10.09
  • Accepted : 2022.04.19
  • Published : 2022.08.25

Abstract

An analytical approach for the free vibration behavior of a sandwich cylindrical shell with a functionally graded (FG) core is presented. It is considered that the FG distribution is in the direction of thickness. The material properties are temperature-dependent. The sandwich cylindrical shell with a FG core is considered with two cases. In the first model, i.e., Ceramic-FGM-Metal (CFM), the interior layer of the cylindrical shell is rich metal while the exterior layer is rich ceramic and the FG material is located between two layers and for the second model i.e., Metal-FGM-Ceramic (MFC), the material distribution is in reverse order. This study develops Carrera's Unified Formulation (CUF) to analyze sandwich cylindrical shell with an FG core for the first time. Considering the Principle of Virtual Displacements (PVDs) according to the CUF, the dependent boundary conditions and governing equations are obtained. The coupled governing equations are derived using Galerkin's method. In order to validate the present results, comparisons are made with the available solutions in the previous researches. The effects of different geometrical and material parameters on the free vibration behavior of a sandwich cylindrical shell with an FG core are examined.

Keywords

Acknowledgement

E. Carrera have been supported by the Russian Science Foundation (Grant No. 18-19-00092).

References

  1. Ahmadi, H. and Foroutan, K. (2020), "Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads", Smart Struct. Syst., Int. J., 25(6), 643-655. http://doi.org/10.12989/sss.2020.25.6.643
  2. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. http://dx.doi.org/10.12989/sss.2016.18.4.787
  3. Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 15(5), 1345-1362. http://dx.doi.org/10.12989/sss.2015.15.5.1345
  4. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064
  5. Bhimaraddi, A. (1999), "Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates", J. Sound Vib., 162, 457-470. https://doi.org/10.1006/jsvi.1993.1133
  6. Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012
  7. Bich, D.H., Dung, D.V., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
  8. Carrera, E. (1997), "Cz requirements-models for the two dimensional analysis of multilayered structures", Compos. Struct., 37(3-4), 373-383. https://doi.org/10.1016/S0263-8223(98)80005-6
  9. Carrera, E. (1998a), "Mixed layer-wise models for multilayered plates analysis", Compos. Struct., 43(1), 57-70. https://doi.org/10.1016/S0263-8223(98)00097-X
  10. Carrera, E. (1998b), "Evaluation of layerwise mixed theories for laminated plates analysis", AIAA J., 36(5), 830-839. https://doi.org/10.2514/2.444
  11. Carrera, E. (1998c), "Layer-wise mixed models for accurate vibrations analysis of multilayered plates", J. Appl. Mech., 65(4), 820-828. https://doi.org/10.1115/1.2791917
  12. Carrera, E. (1999), "A Reissner's mixed variational theorem applied to vibration analysis of multilayered shell", J. Appl. Mech., 66(1), 69-78, https://doi.org/10.1115/1.2789171
  13. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Archiv. Comput. Methods Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224
  14. Carrera, E. and Demasi, L. (2002a), "Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: derivation of finite element matrices", Int. J. Numer. Meth. Eng., 55(2), 191-231. https://doi.org/10.1002/nme.492
  15. Carrera, E. and Demasi, L. (2002b), "Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: numerical implementations", Int. J. Numer. Meth. Eng., 55(3), 253-291. https://doi.org/10.1002/nme.493
  16. Carrera, E. and Ettore, A. (1995), A Class of Two-Dimensional Theories for Anisotropic Multilayered Plates Analysis, Accademia delle. Scienze.
  17. Carrera, E. and Pagani, A. (2014), "Free vibration analysis of civil engineering structures by component-wise models", J. Sound Vib., 333(19), 4597-4620. https://doi.org/10.1016/j.jsv.2014.04.063
  18. Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons.
  19. Chakraborty, S., Dey, T. and Kumar, R. (2019), "Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semianalytical approach", Compos. Part B-Eng., 168, 1-14. https://doi.org/10.1016/j.compositesb.2018.12.051
  20. Cinefra, M., Carrera, E. and Valvano, S. (2015a), "Variable kinematic shell elements for the analysis of electro-mechanical problems", Mech. Adv. Mater. Struct., 22(1-2), 77-106. https://doi.org/10.1080/15376494.2014.908042
  21. Cinefra, M., Valvano, S. and Carrera, E. (2015b), "A layer-wise MITC9 finite element for the freevibration analysis of plates with piezo-patches", Int. J. Smart Nano Mater., 6(2), 85-104. https://doi.org/10.1080/19475411.2015.1037377
  22. Cinefra, M., Valvano, S. and Carrera, E. (2015c), "Heat conduction and thermal stress analysis of laminated composites by a variable kinematic MITC9 shell element", Curved Layered Struct., 1, 301-320. https://doi.org/10.1515/cls-2015-0017
  23. Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005
  24. Dung, D.V. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid, 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008
  25. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., Int. J., 66(3), 295-303. https://doi.org/10.12989/sem.2018.66.3.295
  26. Foroutan, K., Ahmadi, H. and Carrera, E. (2019a), "Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment", Compos. Struct., 227, 111310. https://doi.org/10.1016/j.compstruct.2019.111310
  27. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019b), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel Compos. Struct., Int. J., 32(4), 509-519. https://doi.org/10.12989/scs.2019.32.4.509
  28. Giunta, G., Biscani, F., Belouettar, S., Ferreira, A.J.M. and Carrera, E. (2013), "Free vibration analysis of composite beams via refined theories", Compos. Part B-Eng., 44(1), 540-552. https://doi.org/10.1016/j.compositesb.2012.03.005
  29. Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences", Prog. Aerosp. Sci., 70, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002
  30. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  31. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015a), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014
  32. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015b), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019
  33. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Compos. Part B-Eng., 84, 211-221. https://doi.org/10.1016/j.compositesb.2015.08.081
  34. Liew, K.M. and Alibeigloo, A. (2020), "Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities", Compos. Struct., 256, 113039. https://doi.org/10.1016/j.compstruct.2020.113039
  35. Liew, K.M., Pan, Z. and Zhang, L.W. (2020), "The recent progress of functionally graded CNT reinforced composites and structures", Sci. China Phy. Mech. Astron., 63(3), 234601. https://doi.org/10.1007/s11433-019-1457-2
  36. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
  37. Mashat, D.S., Carrera, E., Zenkour, A.M., Al Khateeb, S.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B-Eng., 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008
  38. Nam, V.H., Phuong, N.T., Van Minh, K. and Hieu, P.T. (2018), "Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads", Eur. J. Mech. A-Solid, 72, 393-406. https://doi.org/10.1016/j.euromechsol.2018.06.005
  39. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B-Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009
  40. Nosi, A. and Reddy, J.N. (1991), "A study of non-linear dynamic equations of higher-order deformation plate theories", Int. J. Non-Linear Mech., 26, 233-249. https://doi.org/10.1016/0020-7462(91)90054-W
  41. Pagani, A., Boscolo, M., Banerjee, J.R. and Carrera, E. (2013), "Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures", J. Sound Vib., 332(23), 6104-6127. https://doi.org/10.1016/j.jsv.2013.06.023
  42. Pan, Z.Z., Zhang, L.W. and Liew, K.M. (2019), "Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers", Comput. Meth. Appl. Mech. Eng., 355, 753-778. https://doi.org/10.1016/j.cma.2019.06.041
  43. Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022
  44. Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012
  45. Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046
  46. Sewall, J.L. and Naumann, E.C. (1968), An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners NASA TN D-4705.
  47. Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
  48. Sofiyev, A., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048
  49. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020
  50. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. http://doi.org/10.12989/sss.2018.22.5.527
  51. Viglietti, A., Zappino, E. and Carrera, E. (2019), "Analysis of variable angle tow composites structures using variable kinematic models", Compos. Part B-Eng., 171, 272-283. https://doi.org/10.1016/j.compositesb.2019.03.072
  52. Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, AS Science Edition M., USSR.
  53. Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronaut., 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004
  54. Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Arch. Appl. Mech., 89(11), 2335-2349. https://doi.org/10.1007/s00419-019-01579-0
  55. Wang, Y.Q. and Zu, J.W. (2017a), "Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid", Compos. Struct., 164, 130-144. https://doi.org/10.1016/j.compstruct.2016.12.053
  56. Wang, Y.Q. and Zu, J.W. (2017b), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429
  57. Wang, Y.Q. and Zu, J.W. (2017c), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
  58. Wang, Y., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6
  59. Wang, Y.Q., Wan, Y.H. and Zu, J.W. (2019a), "Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence", Thin Wall. Struct., 135, 537-547. https://doi.org/10.1016/j.tws.2018.11.023
  60. Wang, Y.Q., Ye, C. and Zu, J.W. (2019b), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022
  61. Wang, Y.Q., Ye, C. and Zu, J.W. (2019c), "Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions", Int. J. Mech. Mater. Des., 15(2), 333-344. https://doi.org/10.1007/s10999-018-9415-8
  62. Wang, Y.Q., Ye, C. and Zhu, J. (2020), "Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core", ZAMM J. Appl. Math. Mech., e201900199. https://doi.org/10.1002/zamm.201900199
  63. Wu, C.P. and Li, H.Y. (2012), "Exact solutions of free vibration of rotating multilayered FGM cylinders", Smart Struct. Syst., Int. J., 9(2), 105-125. http://dx.doi.org/10.12989/sss.2012.9.2.105
  64. Yang, F.L. and Wang, Y.Q. (2020), "Free and Forced Vibration of Beams Reinforced by 3D Graphene Foam", Int. J. Appl. Mech., 12(05), 2050056. https://doi.org/10.1142/S1758825120500568
  65. Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
  66. Zhang, L.W. (2017a), "An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform", Eng. Anal. Bound. Elem., 77, 10-25. https://doi.org/10.1016/j.enganabound.2017.01.004
  67. Zhang, L.W. (2017b), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116
  68. Zhang, L.W. (2017c), "Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports", J. Model. Mech. Mater., 1(1). https://doi.org/10.1515/jmmm-2016-0154
  69. Zhang, L.W. and Liew, K.M. (2015), "Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 132, 974-983. https://doi.org/10.1016/j.compstruct.2015.07.017
  70. Zhang, L.W. and Liew, K.M. (2016a), "Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 138, 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031
  71. Zhang, L.W. and Liew, K.M. (2016b), "Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports", Compos. Struct., 147, 99-110. https://doi.org/10.1016/j.compstruct.2016.03.034
  72. Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102
  73. Zhang, L.W. and Xiao, L.N. (2017), "Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading", Compos. Part B-Eng., 122, 219-230. https://doi.org/10.1016/j.compositesb.2017.03.041
  74. Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043
  75. Zhang, L.W., Huang, D. and Liew, K.M. (2015a), "An elementfree IMLS-Ritz method for numerical solution of three-dimensional wave equations", Comput. Meth. Appl. Mech. Eng., 297, 116-139. https://doi.org/10.1016/j.cma.2015.08.018
  76. Zhang, L.W., Li, D.M. and Liew, K.M. (2015b), "An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method", Eng. Anal. Bound. Elem., 54, 39-46. https://doi.org/10.1016/j.enganabound.2015.01.007
  77. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015c), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B-Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033
  78. Zhang, L.W., Cui, W.C. and Liew, K.M. (2015d), "Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges", Int. J. Mech. Sci., 103, 9-21. https://doi.org/10.1016/j.ijmecsci.2015.08.021
  79. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015e), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
  80. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015f), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011
  81. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016a), "Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory", Compos. Struct., 152, 418-431. https://doi.org/10.1016/j.compstruct.2016.05.040
  82. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016b), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Meth. Appl. Mech. Eng., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016
  83. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016c), "Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates", Comput. Meth. Appl. Mech. Eng., 300, 593-610. https://doi.org/10.1016/j.cma.2015.11.030
  84. Zhang, L.W., Liew, K.M. and Jiang, Z. (2016d), "An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation", Compos. Part B-Eng., 95, 18-28. https://doi.org/10.1016/j.compositesb.2016.03.078
  85. Zhang, L.W., Liu, W.H. and Liew, K.M. (2016e), "Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates", Int. J. Non-Linear Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004
  86. Zhang, L.W., Xiao, L.N., Zou, G.L. and Liew, K.M. (2016f), "Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method", Compos. Struct., 148, 144-154. https://doi.org/10.1016/j.compstruct.2016.04.006
  87. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016g), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B-Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
  88. Zhang, L.W., Zhang, Y., Zou, G.L. and Liew, K.M. (2016h), "Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019
  89. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016i), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029
  90. Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020
  91. Zhang, W., Liu, T., Xi, A. and Wang, Y.N. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049
  92. Zhu, P., Zhang, L.W. and Liew, K.M. (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001