Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.2.121

Free vibration analysis of a sandwich cylindrical shell with an FG core based on the CUF  

Foroutan, Kamran (Faculty of Mechanical Engineering, Shahrood University of Technology)
Ahmadi, Habib (Faculty of Mechanical Engineering, Shahrood University of Technology)
Carrera, Erasmo (Mul2 Group, Department of Mechanical and Aerospace Engineering)
Publication Information
Smart Structures and Systems / v.30, no.2, 2022 , pp. 121-133 More about this Journal
Abstract
An analytical approach for the free vibration behavior of a sandwich cylindrical shell with a functionally graded (FG) core is presented. It is considered that the FG distribution is in the direction of thickness. The material properties are temperature-dependent. The sandwich cylindrical shell with a FG core is considered with two cases. In the first model, i.e., Ceramic-FGM-Metal (CFM), the interior layer of the cylindrical shell is rich metal while the exterior layer is rich ceramic and the FG material is located between two layers and for the second model i.e., Metal-FGM-Ceramic (MFC), the material distribution is in reverse order. This study develops Carrera's Unified Formulation (CUF) to analyze sandwich cylindrical shell with an FG core for the first time. Considering the Principle of Virtual Displacements (PVDs) according to the CUF, the dependent boundary conditions and governing equations are obtained. The coupled governing equations are derived using Galerkin's method. In order to validate the present results, comparisons are made with the available solutions in the previous researches. The effects of different geometrical and material parameters on the free vibration behavior of a sandwich cylindrical shell with an FG core are examined.
Keywords
Carrera's unified formulation; free vibration analysis; functionally graded material; principle of virtual displacements; sandwich cylindrical shell;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015a), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014   DOI
2 Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015b), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019   DOI
3 Liew, K.M. and Alibeigloo, A. (2020), "Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities", Compos. Struct., 256, 113039. https://doi.org/10.1016/j.compstruct.2020.113039   DOI
4 Liew, K.M., Pan, Z. and Zhang, L.W. (2020), "The recent progress of functionally graded CNT reinforced composites and structures", Sci. China Phy. Mech. Astron., 63(3), 234601. https://doi.org/10.1007/s11433-019-1457-2   DOI
5 Nam, V.H., Phuong, N.T., Van Minh, K. and Hieu, P.T. (2018), "Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads", Eur. J. Mech. A-Solid, 72, 393-406. https://doi.org/10.1016/j.euromechsol.2018.06.005   DOI
6 Nosi, A. and Reddy, J.N. (1991), "A study of non-linear dynamic equations of higher-order deformation plate theories", Int. J. Non-Linear Mech., 26, 233-249. https://doi.org/10.1016/0020-7462(91)90054-W   DOI
7 Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019b), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel Compos. Struct., Int. J., 32(4), 509-519. https://doi.org/10.12989/scs.2019.32.4.509   DOI
8 Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046   DOI
9 Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022   DOI
10 Pagani, A., Boscolo, M., Banerjee, J.R. and Carrera, E. (2013), "Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures", J. Sound Vib., 332(23), 6104-6127. https://doi.org/10.1016/j.jsv.2013.06.023   DOI
11 Sewall, J.L. and Naumann, E.C. (1968), An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners NASA TN D-4705.
12 Wang, Y.Q., Ye, C. and Zu, J.W. (2019b), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022   DOI
13 Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Arch. Appl. Mech., 89(11), 2335-2349. https://doi.org/10.1007/s00419-019-01579-0   DOI
14 Wang, Y.Q. and Zu, J.W. (2017c), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023   DOI
15 Wang, Y.Q., Wan, Y.H. and Zu, J.W. (2019a), "Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence", Thin Wall. Struct., 135, 537-547. https://doi.org/10.1016/j.tws.2018.11.023   DOI
16 Zhang, L.W., Cui, W.C. and Liew, K.M. (2015d), "Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges", Int. J. Mech. Sci., 103, 9-21. https://doi.org/10.1016/j.ijmecsci.2015.08.021   DOI
17 Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, AS Science Edition M., USSR.
18 Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025   DOI
19 Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020   DOI
20 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. http://doi.org/10.12989/sss.2018.22.5.527   DOI
21 Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronaut., 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004   DOI
22 Wang, Y.Q. and Zu, J.W. (2017a), "Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid", Compos. Struct., 164, 130-144. https://doi.org/10.1016/j.compstruct.2016.12.053   DOI
23 Wang, Y.Q. and Zu, J.W. (2017b), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429   DOI
24 Zhang, L.W. (2017b), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116   DOI
25 Wang, Y., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6   DOI
26 Wang, Y.Q., Ye, C. and Zu, J.W. (2019c), "Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions", Int. J. Mech. Mater. Des., 15(2), 333-344. https://doi.org/10.1007/s10999-018-9415-8   DOI
27 Wang, Y.Q., Ye, C. and Zhu, J. (2020), "Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core", ZAMM J. Appl. Math. Mech., e201900199. https://doi.org/10.1002/zamm.201900199   DOI
28 Yang, F.L. and Wang, Y.Q. (2020), "Free and Forced Vibration of Beams Reinforced by 3D Graphene Foam", Int. J. Appl. Mech., 12(05), 2050056. https://doi.org/10.1142/S1758825120500568   DOI
29 Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021   DOI
30 Zhang, L.W. (2017c), "Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports", J. Model. Mech. Mater., 1(1). https://doi.org/10.1515/jmmm-2016-0154   DOI
31 Zhang, L.W. and Liew, K.M. (2016b), "Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports", Compos. Struct., 147, 99-110. https://doi.org/10.1016/j.compstruct.2016.03.034   DOI
32 Zhang, L.W. and Xiao, L.N. (2017), "Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading", Compos. Part B-Eng., 122, 219-230. https://doi.org/10.1016/j.compositesb.2017.03.041   DOI
33 Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015c), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B-Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033   DOI
34 Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043   DOI
35 Carrera, E. and Ettore, A. (1995), A Class of Two-Dimensional Theories for Anisotropic Multilayered Plates Analysis, Accademia delle. Scienze.
36 Zhang, L.W., Li, D.M. and Liew, K.M. (2015b), "An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method", Eng. Anal. Bound. Elem., 54, 39-46. https://doi.org/10.1016/j.enganabound.2015.01.007   DOI
37 Zhang, L.W., Song, Z.G. and Liew, K.M. (2015e), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138   DOI
38 Zhang, L.W., Song, Z.G. and Liew, K.M. (2015f), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011   DOI
39 Zhang, L.W. (2017a), "An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform", Eng. Anal. Bound. Elem., 77, 10-25. https://doi.org/10.1016/j.enganabound.2017.01.004   DOI
40 Wu, C.P. and Li, H.Y. (2012), "Exact solutions of free vibration of rotating multilayered FGM cylinders", Smart Struct. Syst., Int. J., 9(2), 105-125. http://dx.doi.org/10.12989/sss.2012.9.2.105   DOI
41 Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102   DOI
42 Zhang, L.W., Huang, D. and Liew, K.M. (2015a), "An elementfree IMLS-Ritz method for numerical solution of three-dimensional wave equations", Comput. Meth. Appl. Mech. Eng., 297, 116-139. https://doi.org/10.1016/j.cma.2015.08.018   DOI
43 Bhimaraddi, A. (1999), "Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates", J. Sound Vib., 162, 457-470. https://doi.org/10.1006/jsvi.1993.1133   DOI
44 Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016c), "Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates", Comput. Meth. Appl. Mech. Eng., 300, 593-610. https://doi.org/10.1016/j.cma.2015.11.030   DOI
45 Zhang, L.W., Xiao, L.N., Zou, G.L. and Liew, K.M. (2016f), "Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method", Compos. Struct., 148, 144-154. https://doi.org/10.1016/j.compstruct.2016.04.006   DOI
46 Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016a), "Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory", Compos. Struct., 152, 418-431. https://doi.org/10.1016/j.compstruct.2016.05.040   DOI
47 Ahmadi, H. and Foroutan, K. (2020), "Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads", Smart Struct. Syst., Int. J., 25(6), 643-655. http://doi.org/10.12989/sss.2020.25.6.643   DOI
48 Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. http://dx.doi.org/10.12989/sss.2016.18.4.787   DOI
49 Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064   DOI
50 Zhang, L.W., Zhang, Y., Zou, G.L. and Liew, K.M. (2016h), "Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019   DOI
51 Carrera, E. (1997), "Cz requirements-models for the two dimensional analysis of multilayered structures", Compos. Struct., 37(3-4), 373-383. https://doi.org/10.1016/S0263-8223(98)80005-6   DOI
52 Carrera, E. (1998b), "Evaluation of layerwise mixed theories for laminated plates analysis", AIAA J., 36(5), 830-839. https://doi.org/10.2514/2.444   DOI
53 Carrera, E. (1998c), "Layer-wise mixed models for accurate vibrations analysis of multilayered plates", J. Appl. Mech., 65(4), 820-828. https://doi.org/10.1115/1.2791917   DOI
54 Mashat, D.S., Carrera, E., Zenkour, A.M., Al Khateeb, S.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B-Eng., 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008   DOI
55 Zhang, L.W., Liew, K.M. and Jiang, Z. (2016d), "An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation", Compos. Part B-Eng., 95, 18-28. https://doi.org/10.1016/j.compositesb.2016.03.078   DOI
56 Zhang, L.W., Song, Z.G. and Liew, K.M. (2016g), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B-Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044   DOI
57 Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020   DOI
58 Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Archiv. Comput. Methods Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224   DOI
59 Carrera, E. and Demasi, L. (2002a), "Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: derivation of finite element matrices", Int. J. Numer. Meth. Eng., 55(2), 191-231. https://doi.org/10.1002/nme.492   DOI
60 Foroutan, K., Ahmadi, H. and Carrera, E. (2019a), "Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment", Compos. Struct., 227, 111310. https://doi.org/10.1016/j.compstruct.2019.111310   DOI
61 Carrera, E. and Pagani, A. (2014), "Free vibration analysis of civil engineering structures by component-wise models", J. Sound Vib., 333(19), 4597-4620. https://doi.org/10.1016/j.jsv.2014.04.063   DOI
62 Zhang, L.W. and Liew, K.M. (2015), "Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 132, 974-983. https://doi.org/10.1016/j.compstruct.2015.07.017   DOI
63 Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 15(5), 1345-1362. http://dx.doi.org/10.12989/sss.2015.15.5.1345   DOI
64 Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012   DOI
65 Zhang, L.W., Song, Z.G. and Liew, K.M. (2016i), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029   DOI
66 Zhang, W., Liu, T., Xi, A. and Wang, Y.N. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049   DOI
67 Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016b), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Meth. Appl. Mech. Eng., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016   DOI
68 Carrera, E. (1998a), "Mixed layer-wise models for multilayered plates analysis", Compos. Struct., 43(1), 57-70. https://doi.org/10.1016/S0263-8223(98)00097-X   DOI
69 Carrera, E. (1999), "A Reissner's mixed variational theorem applied to vibration analysis of multilayered shell", J. Appl. Mech., 66(1), 69-78, https://doi.org/10.1115/1.2789171   DOI
70 Carrera, E. and Demasi, L. (2002b), "Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: numerical implementations", Int. J. Numer. Meth. Eng., 55(3), 253-291. https://doi.org/10.1002/nme.493   DOI
71 Chakraborty, S., Dey, T. and Kumar, R. (2019), "Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semianalytical approach", Compos. Part B-Eng., 168, 1-14. https://doi.org/10.1016/j.compositesb.2018.12.051   DOI
72 Cinefra, M., Carrera, E. and Valvano, S. (2015a), "Variable kinematic shell elements for the analysis of electro-mechanical problems", Mech. Adv. Mater. Struct., 22(1-2), 77-106. https://doi.org/10.1080/15376494.2014.908042   DOI
73 Dung, D.V. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid, 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008   DOI
74 Zhang, L.W. and Liew, K.M. (2016a), "Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 138, 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031   DOI
75 Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012   DOI
76 Cinefra, M., Valvano, S. and Carrera, E. (2015b), "A layer-wise MITC9 finite element for the freevibration analysis of plates with piezo-patches", Int. J. Smart Nano Mater., 6(2), 85-104. https://doi.org/10.1080/19475411.2015.1037377   DOI
77 Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035   DOI
78 Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons.
79 Cinefra, M., Valvano, S. and Carrera, E. (2015c), "Heat conduction and thermal stress analysis of laminated composites by a variable kinematic MITC9 shell element", Curved Layered Struct., 1, 301-320. https://doi.org/10.1515/cls-2015-0017   DOI
80 Zhu, P., Zhang, L.W. and Liew, K.M. (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001   DOI
81 Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005   DOI
82 Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., Int. J., 66(3), 295-303. https://doi.org/10.12989/sem.2018.66.3.295   DOI
83 Giunta, G., Biscani, F., Belouettar, S., Ferreira, A.J.M. and Carrera, E. (2013), "Free vibration analysis of composite beams via refined theories", Compos. Part B-Eng., 44(1), 540-552. https://doi.org/10.1016/j.compositesb.2012.03.005   DOI
84 Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences", Prog. Aerosp. Sci., 70, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002   DOI
85 Pan, Z.Z., Zhang, L.W. and Liew, K.M. (2019), "Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers", Comput. Meth. Appl. Mech. Eng., 355, 753-778. https://doi.org/10.1016/j.cma.2019.06.041   DOI
86 Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Compos. Part B-Eng., 84, 211-221. https://doi.org/10.1016/j.compositesb.2015.08.081   DOI
87 Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X   DOI
88 Bich, D.H., Dung, D.V., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002   DOI
89 Zhang, L.W., Liu, W.H. and Liew, K.M. (2016e), "Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates", Int. J. Non-Linear Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004   DOI
90 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B-Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009   DOI
91 Sofiyev, A., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048   DOI
92 Viglietti, A., Zappino, E. and Carrera, E. (2019), "Analysis of variable angle tow composites structures using variable kinematic models", Compos. Part B-Eng., 171, 272-283. https://doi.org/10.1016/j.compositesb.2019.03.072   DOI