Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.4.309

Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes  

Shin, G. (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
Choo, W. (Department of Materials Science and Engineering, Hanbat National University)
Yoon, J.H. (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
Yang, S.Y. (Korea University of Technology and Education)
Kim, J.H. (Department of Materials Science and Engineering, Hanbat National University)
Publication Information
Journal of Powder Materials / v.29, no.4, 2022 , pp. 309-313 More about this Journal
Abstract
In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.
Keywords
Direct Energy Deposition; Functionally Gradient Material; Stainless steel; Low alloy steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Bandyopadhyay and B. Heer: Mater. Sci. Eng., R, 129 (2018) 1.
2 J. O. Milewski: Additive Manufacturing of Metals, Springer International Publishing, Switzerland (2017).
3 W. J. Oh, Y. Son and D. S. Shim: Korean J. Met. Mater., 57 (2019) 543.
4 J. Mazumder, D. Dutta, N. Kikuchi and A. Ghosh: Opt. Lasers Eng., 34 (2000) 397.
5 N. K. Adomako, S. Noh, C. S. Oh, S. Yang and J. H. Kim: Mater. Res. Lett., 7 (2019) 259.
6 T. Allen, J. Busby, M. Meyer and D. Petti: Mater. Today 13 (2010) 14.
7 J. H. Lee: Corros. Sci. Technol. 18 (2019) 33.
8 G. S. Shin, J. H. Yoon, D. W. Kim, Y. H. Park and J. H. Kim: Korean J. Met. Mater., 58 (2020) 782.
9 B. Saleh, J. Jiang, A. Ma, D. Song, D. Yang and Q. Xu: Met. Mater. Int., 26 (2020) 933.
10 G. Zheng, Z. Huang, Q. Yu, W. Hu, X. Qiu, A, Lixia, Y. Wang, Y. Jiao, Y. Zhou and H. Zhai: Met. Mater. Int., 26 (2020) 905.
11 F. Khaleghi, M. Tajally, E. Emadoddin and M. Mohri: Met. Mater. Int., 23 (2017) 915.
12 B. Kieback, A. Neubrand and H. Riedel: Mater. Sci. Eng., A, 362 (2003) 81.
13 B. Onuike and A. Bandyopadhyay: Addit. Manuf., 22 (2018) 844.
14 N. K. Adomako, J. O. Kim, S. H. Lee, K. H. Noh and J. H. Kim: Mater. Sci. Eng., A, 732 (2018) 378.
15 S. S. Hwang: J. Nucl. Mater., 443 (2013) 321.
16 G. S. Shin, Y. H. Park, D. W. Kim, J. H. Yoon and J. H. Kim: Korean J. Met. Mater., 59 (2021) 81.
17 S. M. Catherine, L. Weiss, O. Perroud, D. Joguet, D. Boisselier and P. Laheurte: J. Mater. Process. Technol., 268 (2019) 171.
18 N. K. Adomako, J. O. Kim and J. H. Kim: Mater. Sci. Eng., A, 753 (2019) 208.
19 J. S. Kim, J. N. Kim and C. Y. Kang: Korean J. Met. Mater., 56 (2018) 265.
20 V. N. Shah, D. B. Lowenstein, A. P. L. Turner, S. R. Ward, J. A. Gorman, P. E. MacDonald and G. H. Weidenhamer: Nucl. Eng. Des., 134 (1992) 199.