Browse > Article
http://dx.doi.org/10.12989/sem.2020.75.5.633

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM  

Madenci, Emrah (Department of Civil Engineering, Necmettin Erbakan University)
Gulcu, Saban (Department of Computer Engineering, Necmettin Erbakan University)
Publication Information
Structural Engineering and Mechanics / v.75, no.5, 2020 , pp. 633-642 More about this Journal
Abstract
Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.
Keywords
functionally graded material beam; artificial neural networks; mixed finite element method; displacement data;
Citations & Related Records
Times Cited By KSCI : 56  (Citation Analysis)
연도 인용수 순위
1 Rastbood, A., Y. Gholipour and A. Majdi (2017), "Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network", Periodica Polytech. Civil Eng., 61(4), 664-676. https://doi.org/10.3311/PPci.9700.
2 Sankar, B. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.   DOI
3 Skorpil, V. and J. Stastny (2006), "Neural networks and back propagation algorithm", Electron Bulg Sozopol, 20-22.
4 Solmaz, S. and O. Civalek (2018), "Numerical Methods for FGM Composites Shells and Plates", J. Eng. Appl. Sci., 10(1), 5-12. http://dx.doi.org/10.24107/ijeas.415294.
5 Arioui, O., K. Belakhdar, A. Kaci and A. Tounsi (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.   DOI
6 Azqandi, M. S., N. Nooredin and A. Ghoddosian (2018), "Optimization of spring back in U-die bending process of sheet metal using ANN and ICA", Struct. Eng. Mech., 65(4), 447-452. https://doi.org/10.12989/sem.2018.65.4.447.   DOI
7 Bachman, L.F. (2004), Statistical Analyses for Language Assessment Book, Cambridge University Press, United Kingdom.
8 Bahadir, F. and F. S. Balik (2017), "Predicting Displacement Data of Three-Dimensional Reinforced Concrete Frames with Different Strengthening Applications Using ANN", Periodica Polytechnica Civil Eng., 61(4), 843-856. https://doi.org/10.3311/PPci.9652.
9 Belabed, Z., A. A. Bousahla, M. S. A. Houari, A. Tounsi and S. Mahmoud (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.   DOI
10 Belabed, Z., M. S. A. Houari, A. Tounsi, S. Mahmoud and O. A. Beg (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B. Eng., 60: 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.   DOI
11 Beldjelili, Y., A. Tounsi and S. Mahmoud (2016), "Hygro-thermomechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.   DOI
12 Wang, B., J. H. Ma and Y. P. Wu (2013), "Application of artificial neural network in prediction of abrasion of rubber composites", Mater. Design, 49, 802-807. https://doi.org/10.1016/j.matdes.2013.01.047.   DOI
13 Talha, M. and B. Singh (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Modell.,34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.   DOI
14 Trinh1a, T.-H., D.-K. Nguyen2b, B. S. Gan and S. Alexandrov3c (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., 58(3), 515-532. http://dx.doi.org/10.12989/sem.2016.58.3.515.   DOI
15 Twomey, J. and A. Smith (1995), "Performance measures, consistency, and power for artificial neural network models", Math. Comput. Modell.,21(1-2), 243-258. https://doi.org/10.1016/0895-7177(94)00207-5.   DOI
16 Yadav, A. K., H. Malik and A. Mittal (2015), "Artificial neural network fitting tool based prediction of solar radiation for identifying solar power potential", J. Electr. Eng, 15(2), 25-29.
17 Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657.   DOI
18 Zhao, Y., M. Noori and W. A. Altabey (2017), "Damage detection for a beam under transient excitation via three different algorithms", Struct. Eng. Mech., 64(6), 803-817. https://doi.org/10.12989/sem.2017.64.6.803.   DOI
19 Benferhat, R., T. H. Daouadji and B. Adim (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107. http://dx.doi.org/10.12989/amr.2016.5.2.107.   DOI
20 Zhang, Z. and K. Friedrich (2003), "Artificial neural networks applied to polymer composites: A review", Compos. Sci. Technol., 63(14), 2029-2044. https://doi.org/10.1016/S0266-3538(03)00106-4.   DOI
21 Adim, B., T. H. Daouadji and B. Abbes (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x.
22 Abdelaziz, H. H., M. A. A. Meziane, A. A. Bousahla, A. Tounsi, S. Mahmoud and A. S. Alwabli (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.   DOI
23 Abdelhak, Z., L. Hadji, T. H. Daouadji and E. Adda Bedia (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.   DOI
24 Adim, B. and T. H. Daouadji (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223. http://dx.doi.org/10.12989/amr.2016.5.4.223.   DOI
25 Adim, B., T. H. Daouadji, B. Rabia and L. Hadji (2016), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.   DOI
26 Aggarwal, C.C. (2018), Neural Networks and Deep Learning, Springer, Germany.
27 Bouhadra, A., S. Benyoucef, A. Tounsi, F. Bernard, R. B. Bouiadjra and M. Sid Ahmed Houari (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therhaml. Stress., 38(6), 630-650. https://doi.org/10.1080/01495739.2015.1015900.   DOI
28 Benferhat, R., T. Hassaine Daouadji, L. Hadji and M. Said Mansour (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.   DOI
29 Benyamina, A. B., B. Bouderba and A. Saoula (2018), "Bending Response of Composite Material Plates with Specific Properties, Case of a Typical FGM" Ceramic/Metal" in Thermal Environments", Periodica Polytech. Civil Eng., 62(4), 930-938. https://doi.org/10.3311/PPci.11891.
30 Bouderba, B., M. S. A. Houari and A. Tounsi (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.   DOI
31 Bourada, F., K. Amara, A. A. Bousahla, A. Tounsi and S. Mahmoud (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.   DOI
32 Akgun, G. and H. Kurtaran (2019), "Large displacement transient analysis of FGM super-elliptic shells using GDQ method", Thin. Wall. Struct. 141: 133-152. https://doi.org/10.1016/j.tws.2019.03.049.   DOI
33 Cain, G. (2016), Artificial Neural Networks: New Research, Nova Science Publishers, New York, USA.
34 Ziane, N., S. A. Meftah, G. Ruta, A. Tounsi and E. A. Adda Bedia (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., 54(3), 579-595. https://doi.org/10.12989/sem.2015.54.3.579.   DOI
35 Zine, A., A. Tounsi, K. Draiche, M. Sekkal and S. Mahmoud (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.1016/j.compstruct.2012.08.025.   DOI
36 Zhang, D.-G. and Y.-H. Zhou (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720.   DOI
37 Bousahla, A. A., S. Benyoucef, A. Tounsi and S. Mahmoud (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.   DOI
38 Bre, F., J. M. Gimenez and V. D. Fachinotti (2018), "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energy and Build., 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045.   DOI
39 Chang, M., J. K. Kim and J. Lee (2019), "Hierarchical neural network for damage detection using modal parameters", Struct. Eng. Mech., 70(4), 457-466. https://doi.org/10.12989/sem.2019.70.4.457.   DOI
40 Chakraborty, A., S. Gopalakrishnan and J. Reddy (2003), "A new beam finite element for the analysis of functionally graded materials", J. Mech. Sci.,45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4.   DOI
41 Cho, J. and S. Shin (2004), "Material composition optimization for heat-resisting FGMs by artificial neural network", Compos. Part A Appl. Sci. Manufact., 35(5), 585-594. https://doi.org/10.1016/j.compositesa.2003.12.003.   DOI
42 Daouadji, T. H. and B. Adim (2016), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., 5(3), 141. http://dx.doi.org/10.12989/amr.2016.5.3.141.   DOI
43 Daouadji, T. H. and R. Benferhat (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 035. http://dx.doi.org/10.12989/amr.2016.5.1.035.   DOI
44 Ersoy, H., K. Mercan and O. Civalek (2018), "Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods", Compos. Struct.,183, 7-20. https://doi.org/10.1016/j.compstruct.2016.11.051.   DOI
45 Ebrahimi, F. and A. Dabbagh (2018), "NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems", Struct. Eng. Mech., 68(6), 701-711. https://doi.org/10.12989/sem.2018.68.6.701.   DOI
46 El-Haina, F., A. Bakora, A. A. Bousahla, A. Tounsi and S. Mahmoud (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.   DOI
47 Eratll, N. and A. Akoz (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comput. Struct., 65(4), 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8.   DOI
48 Gemi, L., M. Kara and A. Avci (2016), "Low velocity impact response of prestressed functionally graded hybrid pipes", Compos. Part B. Eng., 106, 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025.   DOI
49 Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B. Eng., 153: 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056.   DOI
50 Gemi, L., C. Aksoylu, S. Yazman, Y. O. Ozkilic and M. H. Arslan (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
51 Gemi, L., M. Kayrici, M. Uludag, D. S. Gemi and O. S. Sahin (2018), "Experimental and statistical analysis of low velocity impact response of filament wound composite pipes", Compos. Part B. Eng., 149, 38-48. https://doi.org/10.1016/j.compositesb.2018.05.006.   DOI
52 Hadi, A., M. Z. Nejad, A. Rastgoo and M. Hosseini (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663.   DOI
53 Karina, C. N., P.-j. Chun and K. Okubo (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.   DOI
54 Hadj, B., B. Rabia and T. H. Daouadji (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/sem.2019.72.1.061.   DOI
55 Hore, S., S. Chatterjee, S. Sarkar, N. Dey, A. S. Ashour, D. Balas-Timar and V. E. Balas (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. http://dx.doi.org/10.12989/sem.2016.58.3.459.   DOI
56 Jing, L.-l., P.-j. Ming, W.-p. Zhang, L.-r. Fu and Y.-p. Cao (2016), "Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method", Compos. Struct.,138, 192-213. https://doi.org/10.1016/j.compstruct.2015.11.027.   DOI
57 Kaci, A., M. S. A. Houari, A. A. Bousahla, A. Tounsi and S. Mahmoud (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.   DOI
58 Kadioglu, F. and A. Y. Akoz (2003), "The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams", Struct. Eng. Mech., 15(6), 735-752. https://doi.org/10.12989/sem.2003.15.6.735.   DOI
59 Kou, X., G. T. Parks and S. T. Tan (2012), "Optimal design of functionally graded materials using a procedural model and particle swarm optimization", Comput.-Aided Design, 44(4), 300-310. https://doi.org/10.1016/j.cad.2011.10.007.   DOI
60 Labossiere, P. and N. Turkkan (1993), "Failure prediction of fibrereinforced materials with neural networks", J. Reinforced Plastics Compos., 12(12), 1270-1280. https://doi.org/10.1177%2F073168449301201202.   DOI
61 Nejad, M. Z., A. Hadi and A. Farajpour (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.   DOI
62 Litak, G., J. Gajewski, A. Syta and J. Jonak (2008), "Quantitative estimation of the tool wear effects in a ripping head by recurrence plots", J. Theoretical Appl. Mech., 46(3), 521-530.
63 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
64 Madenci, E., Y. O. Ozkilic and L. Gemi (2020), "Experimental and Theoretical Investigation on Flexure Performance of Pultruded GFRP Composite Beams with Damage Analyses", Compos. Struct., 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
65 Madenci, E. and A. Ozutok (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97. https://doi.org/10.12989/sem.2020.73.1.097.   DOI
66 Mirjavadi, S. S., B. M. Afshari, N. Shafiei, A. Hamouda and M. Kazemi (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.   DOI
67 Nejad, M. Z., A. Hadi, A. Omidvari and A. Rastgoo (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.   DOI
68 Ozutok, A., E. Madenci and F. Kadioglu (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.   DOI
69 Nguyen, T.-K., T. P. Vo and H.-T. Thai (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B. Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.   DOI
70 Nielsen, D. and R. Pitchumani (2001), "Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization", Compos. Part A Appl. Sci. Manufact., 32(12), 1789-1803. https://doi.org/10.1016/S1359-835X(01)00013-6.   DOI
71 Pidaparti, R. and M. Palakal (1993), "Material model for composites using neural networks", AIAA J., 31(8), 1533-1535. https://doi.org/10.2514/3.11810.   DOI
72 Ozutok, A. and E. Madenci (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", J. Struct. Stabilibty Dynam., 13(02), 1250056. https://doi.org/10.1142/S0219455412500563.   DOI
73 Ozutok, A. and E. Madenci (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", J. Mech. Sci., https://doi.org/10.1016/j.ijmecsci.2017.06.013.
74 Peng-hui, L., Z. Hong-ping, L. Hui and W. Shun (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., 15(1), 227-244.   DOI
75 Raschka, S. (2015), Python Machine Learning, Packt Publishing Ltd., Birmingham, United Kingdom.
76 Pradhan, K. and S. Chakraverty (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B. Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.   DOI
77 Prakash, T. and M. Ganapathi (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos. Part B. Eng., 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005.   DOI
78 Rabia, B., T. H. Daouadji and R. Abderezak (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.   DOI
79 Rashid, T. (2016), Make Your Own Neural Network, CreateSpace Independent Publishing Platform, USA.