• Title/Summary/Keyword: E protein

Search Result 5,086, Processing Time 0.031 seconds

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Engineering CotA Laccase for Acidic pH Stability Using Bacillus subtilis Spore Display

  • Sheng, Silu;Jia, Han;Topiol, Sidney;Farinas, Edgardo T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.507-513
    • /
    • 2017
  • Bacillus subtilis spores can be used for protein display to engineer protein properties. This method overcomes viability and protein-folding concerns associated with traditional protein display methods. Spores remain viable under extreme conditions and the genotype/phenotype connection remains intact. In addition, the natural sporulation process eliminates protein-folding concerns that are coupled to the target protein traveling through cell membranes. Furthermore, ATP-dependent chaperones are present to assist in protein folding. CotA was optimized as a whole-cell biocatalyst immobilized in an inert matrix of the spore. In general, proteins that are immobilized have advantages in biocatalysis. For example, the protein can be easily removed from the reaction and it is more stable. The aim is to improve the pH stability using spore display. The maximum activity of CotA is between pH 4 and 5 for the substrate ABTS (ABTS = diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate). However, the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 5. A library of approximately 3,000 clones was screened. A E498G variant was identified to have a half-life of inactivation ($t_{1/2}$) at pH 4 that was 24.8 times greater compared with wt-CotA. In a previous investigation, a CotA library was screened for organic solvent resistance and a T480A mutant was found. Consequently, T480A/E498G-CotA was constructed and the $t_{1/2}$ was 62.1 times greater than wt-CotA. Finally, E498G-CotA and T480A/E498G-CotA yielded 3.7- and 5.3-fold more product than did wt-CotA after recycling the biocatalyst seven times over 42 h.

Induction of Deletion Mutation for the Enzymatic Domain in the Shigatoxin2e A Subunit Gene of Esherichila coli O139 Isolates and Expression of Mutated Protein (분리 대장균 O139의 Shigatoxin2e A 유전자의 효소 활성부에 대한 결손변이 유발 및 변이 단백질의 발현)

  • Cho Eun-jung;Kim Do-kyong;Kim Sang-hyun;Kim Yeong-il;Lee Chul-hyun;Lee Woo-won;Son Won-geun;Shin Jong-Uk;Kim Yong-hwan
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.386-391
    • /
    • 2005
  • This study was done to produce a mutated protein inactivated cytotoxicity of Shigatoxin 2e (Stx2e) of E.coli O139 isolates by deletional mutagenesis of Stx2e A subunit gene encoding active-site cleft of enzymatic domain in ST2e holotoxin. Cytotoxicity of the toxoid expressed from the mutant Stx2e gene was compared with wild type Stx2e for development of vaccine candidate. A recombinant plasmid pED18 containing Stx2e gene ot E.coli O139 isolates was used to generate mutation plasmid. Deletion mutagenesis was conducted for Stx2e A subunit gene encoding enzymatically active domain by polymerase chain reaction (PCR) using ot designed primer to induce deletional mutation. DNA sequence analysis was confirmed that the pentamer (Typ 202- Ser 206) that lies within the proposed active-site cleft in the second region was completely deleted. A DNA fragment of 1.1 kb that encode the new mutant Stx2eA gene was inserted into plasmid pRSET vector digested with EcoRV-Hind III and named pEDSET The PEDSET was transformed in E. coli for expression of mutant protein and the protein was confirmed by SDS-PACE and Western-blotting. The protein expressed by the mutant was tested to confirm the reduction of cytotoxic activities on Vero cell using microcytotoxicity assay compared with wild type Stx2e, the cytotoxicity of deletional mutant protein was at least reduced by 3,000-fold on Vero cell.

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Detection for Multiresidue of the Organophosphorus and Carbamate Pesticides by Enzyme-Inhibition Method (효소 저해법을 이용한 유기인계 및 Carbamate계 농약의 다성분 잔류 검출)

  • 김정호
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • This study was carried out with the detection for multiresidue of the organophosphorus pesticides such as malathion, parathion. diazinon, and carbamate pesticide such as carbaryl, by enzyme-inhibition method. The acetylcholinesterase (AChE) and cholinesterase (ChE) activities in chicken brain determined by the Ellman's method were 166.6 and 5.8 $\mu$mol/min/g protein, and in chicken plasma were 23.1 and 8.3 $\mu$mol/min/g protein, respectively. The optimum pH of AChE and ChE was 8.2 and 7.8, respectively. The Km of AChE and ChE was 0.034 and 0.045 mM, respectively. I$\_$50/ for AChE and ChE by some organophosphorus was 55.82 and 99.42 mg/L of malathion, 31.16 and 29.13 mg/L of parathion, and 17.89 and 19.62 mg/L of diazinon, respectively. I$\_$50/ for AChE and ChE by carbaryl of carbamate was 0.10 and 0.05 mg/L, respectively. The 0.07 mg/L of drinking water advisory level for carbaryl could be detected with I$\_$50/ of AChE and ChE. Enzyme-Inhibition (EI) method with AChE and ChE was used the multiresidue method to detect the 1 mg/L of the carbamate pesticides.

Regulation of Cyclic AMP-Response Element Binding Protein Zhangfei (CREBZF) Expression by Estrogen in Mouse Uterus

  • Jang, Hoon
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.95-104
    • /
    • 2018
  • CREBZF (cAMP-response element binding protein zhangfei) is a member of ATF/CREB family, and which regulates various cellular functions by suppressing major factors with direct interaction. In this study, we have examined the expression of CREBZF on mouse endometrium during uterus estrous cycles and estrogen (E2) treatment. In uterus, CREBZF mRNA expression was higher than other organs and mRNA and protein of CREBZF was increased in proestrus phase and decreased in estrus phase. The expression of CREBZF in 3-weeks old mouse uterus was reduced by E2 injection in endometrium. In addition, the expression of progesterone receptor, a marker of E2 in ovariectomized mice was found to be strongly expressed in stroma, while CREBZF was only expressed in epithelium. Also, we conformed that E2-suppressed CREBZF was restored by co-injection of ICI 182,780, an estrogen receptor antagonist. Overall, these results suggest that CREBZF is regulated by estrogen and involved in ER signaling pathway in mouse uterus.

Effect of Glucose, Starch, Sucrose on the Protein Utilization In Weanling Rats (흰쥐에 있어 탄수화물의 종류에 따른 단백질의 체내 이용에 관한 연구)

  • Hong, Myoung-Bock;Kim, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.13 no.4
    • /
    • pp.167-176
    • /
    • 1980
  • This study was conducted to compare effects of various types of dietary carboh ydrates fed with different levels of protein on the protein utilization in weanling rats. Sixty male Sprague-Dawley rats weighing $60{\pm}1.3grams$ were adapted for 1 week with 77% starch-15% casein diet. Then the animals divided into 12 groups according to body weight and fed each experimental diet for two weeks. Carbodydrates used were glucose, starch, and sucrose and the amount of protein given were 0g, 1g, 3g, 5g casein/day. Protein portion of the diet was fed in two seperate feedings per day while nonprotein portion was fed ad libitum. It seemed that there was no significant difference in the protein utilization by using the different kinds of carbohydrate, but in P.E.R., N.P.U., weights of organs and protein and lipid in total carcass, glucose groups were tended to be slightly lower than starch and sucrose groups. The larger the amount of casein given, the higher were the value of body weight gain, F.E.R., weights of organs, total lipid in carcass and the amount of nitrogen retention. On the while, the larger the amount of casein given, the lower were the value of the intake of non-protein portion, P.E.R., N.P.U, and the percentage of nitrogen retention.

  • PDF

Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

  • Zuo, Deyu;Jiang, Heng;Yi, Shixiong;Fu, Yang;Xie, Lei;Peng, Qifeng;Liu, Pei;Zhou, Jie;Li, Xunjia
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.501-514
    • /
    • 2022
  • This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

4-(N-Methyl-N-nitrosamino)-1(3-pyridyl)-1-butanone(NNK) Restored the Cap-dependent Protein Translation Blocked by Rapamycin

  • Kim Jun-Sung;Park Jin Hong;Park Sung-Jin;Kim Hyun Woo;Hua Jin;Cho Hyun Sun;Hwang Soon Kyung;Chang Seung Hee;Tehrani Arash Minai;Cho Myung Haing
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.347-353
    • /
    • 2005
  • Eukaryotic initiation factor 4E (elF4E) is a key element for cap-dependent protein translation controlled by affinity between elF4E and 4E-binding protein 1 (4E-BP1). Rapamycin can also affect protein translation by regulating 4E-BP1 phosphorylation. Tobacco-specific nitrosamine, 4(N-methyl-N-nitrosamino )-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen, but its precise lung cancer induction mechanism remains unknown. Relative roles of cap-dependent and -independent protein translation in terms of NNK-induced lung carcinogenesis were elucidated using normal human bronchial epithelial cells. NNK concentrations applied in this study did not decrease cell viability. Addition of NNK restored rapamycin-induced decrease of protein synthesis and rapamycin-induced phosphorylation of 4E-BP1, and increased expression levels of mTOR, ERK1/2, p70S6K, and Raf-1 in a concentration-dependent manner. NNK also caused perturbation of normal cell cycle progression. Taken together, NNK might cause toxicity through the combination of restoration of 4E-BP1 phosphorylation and increase of elF4E as well as mTOR protein expression, interruption of Raf1/ERK as well as the cyclin G-associated p53 network. Our data could be applied towards elucidation of the molecular basis for lung cancer treatment.

Isolation and Purification of Hantaan Viral Nucleocapsid Protein Expressed in Escherichia coli (대장균에서 발현된 한탄바이러스 뉴클레오캡시드 단백질의 분리 정제)

  • 노갑수;김종완;하석훈;정근택;문상범;최차용
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.656-661
    • /
    • 1998
  • Hantaan virus belonging to the genus Hantavirus and family Bunyaviridae causes an acute severe illness of human, Haemorrhagic Fever with Renal Syndrome (HFRS). It is a rodent host-borne pathogen and distributed in Asia and Eastern Europe. Hantaviruses have three major antigens, i.e., G1, G2 glycoproteins and nucleocapsid protein (N). Among them, nucleocapsid protein was reported to be the most invaluable antigen as for diagnosis. We have cloned and expressed Hantaan viral nucleocapsid gene in E. coli BL21(DE3). In this study, we have tried to purify the nucleocapsid protein produced by recombinant E. coli, and could attained a purity of >90% by anti-N monoclonal antibody-coupled immunoaffinity chromatography or phenyl sepharose hydrophobic interaction chromatography.

  • PDF