• 제목/요약/키워드: Dynamical system

검색결과 558건 처리시간 0.024초

DENSITY OF D-SHADOWING DYNAMICAL SYSTEM

  • Kim, J.M.;Kim, S.G.
    • Korean Journal of Mathematics
    • /
    • 제13권1호
    • /
    • pp.91-101
    • /
    • 2005
  • In this paper, we give the notion of the D-shadowing property, D-inverse shadowing property for dynamical systems. and investigate the density of D-shadowing dynamical systems and the D-inverse shadowing dynamical systems. Moreover we study some relationships between the D-shadowing property and other dynamical properties such as expansivity and topological stability.

  • PDF

동적 신경회로망을 이용한 비선형 시스템 제어 방식 (Control Method of Nonlinear System using Dynamical Neural Network)

  • 정경권;이정훈;김영렬;이용구;손동설;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.33-36
    • /
    • 2002
  • In this paper, we propose a control method of an unknown nonlinear system using a dynamical neural network. The method proposed in this paper performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed algorithm, we simulated one-link manipulator. The simulation result showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

DISSIPATIVE RANDOM DYNAMICAL SYSTEMS AND LEVINSON CENTER

  • Asmahan A. Yasir;Ihsan J. Kadhim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.521-535
    • /
    • 2023
  • In this work, some various types of Dissipativity in random dynamical systems are introduced and studied: point, compact, local, bounded and weak. Moreover, the notion of random Levinson center for compactly dissipative random dynamical systems presented and prove some essential results related with this notion.

CONSTRUCTIVE AND DISCRETE VERSIONS OF THE LYAPUNOV′S STABILITY THEOREM AND THE LASALLE′S INVARIANCE THEOREM

  • Lee, Jae-Wook
    • 대한수학회논문집
    • /
    • 제17권1호
    • /
    • pp.155-163
    • /
    • 2002
  • The purpose of this paper is to establish discrete versions of the well-known Lyapunov's stability theorem and LaSalle's invariance theorem for a non-autonomous discrete dynamical system. Our proofs for these theorems are constructive in the sense that they are made by explicitly building a Lyapunov function for the system. A comparison between non-autonomous discrete dynamical systems and continuous dynamical systems is conducted.

Controllability and Observability of Sylvester Matrix Dynamical Systems on Time Scales

  • Appa Rao, Bhogapurapu Venkata;Prasad, Krosuri Anjaneya Siva Naga Vara
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.529-539
    • /
    • 2016
  • In this paper, we obtain solution for the first order matrix dynamical system and also we provide set of necessary and sufficient conditions for complete controllability and complete observability of the Sylvester matrix dynamical system.

GENERALIZED CONTINUED FRACTION ALGORITHM FOR THE INDEX 3 SUBLATTICE

  • Dong Han Kim
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제31권4호
    • /
    • pp.439-451
    • /
    • 2024
  • Motivated by an algorithm to generate all Pythagorean triples, Romik introduced a dynamical system on the unit circle, which corresponds the continued fraction algorithm on the index-2 sublattice. Cha et al. extended Romik's work to other ellipses and spheres and developed a dynamical system generating all Eisenstein triples. In this article, we review the dynamical systems by Romik and by Cha et al. and find connections to the continued fraction algorithms.

자율분산 신경망을 이용한 비선형 동적 시스템 식별 (Identification of nonlinear dynamical systems based on self-organized distributed networks)

  • 최종수;김형석;김성중;권오신;김종만
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식 (Control Method of on Unknown Nonlinear System Using Dynamical Neural Network)

  • 정경권;김영렬;정성부;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.494-497
    • /
    • 2002
  • 본 논문에서는 동적신경회로망을 이용한 미지의 비선형 시스템 제어 방식을 제안하였다. 제안한 방식은 비선형 시스템의 상태 공간 모델과 유사한 형태의 신경회로망을 구성하여 비선형 시스템을 식별하고, 식별한 정보를 이용하여 제어기를 설계하는 방식이다. 제안한 방식의 유용성을 확인하기 위하여 단일 관절 매니퓰레이터를 대상으로 시뮬레이션을 수행한 결과 우수한 제어 성능을 확인하였다.

  • PDF

MULTIPLE VALUED ITERATIVE DYNAMICS MODELS OF NONLINEAR DISCRETE-TIME CONTROL DYNAMICAL SYSTEMS WITH DISTURBANCE

  • Kahng, Byungik
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.17-39
    • /
    • 2013
  • The study of nonlinear discrete-time control dynamical systems with disturbance is an important topic in control theory. In this paper, we concentrate our efforts to multiple valued iterative dynamical systems, which model the nonlinear discrete-time control dynamical systems with disturbance. After establishing the validity of such modeling, we study the invariant set theory of the multiple valued iterative dynamical systems, including the controllability/reachablity problems of the maximal invariant sets.

Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구 (Design of nonlinear system controller based on radial basis function network)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF