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MULTIPLE VALUED ITERATIVE DYNAMICS MODELS OF
NONLINEAR DISCRETE-TIME CONTROL DYNAMICAL
SYSTEMS WITH DISTURBANCE

BYUNGIK KAHNG

ABSTRACT. The study of nonlinear discrete-time control dynamical sys-
tems with disturbance is an important topic in control theory. In this
paper, we concentrate our efforts to multiple valued iterative dynami-
cal systems, which model the nonlinear discrete-time control dynamical
systems with disturbance. After establishing the validity of such mod-
eling, we study the invariant set theory of the multiple valued iterative
dynamical systems, including the controllability /reachablity problems of
the maximal invariant sets.

1. Introduction

The importance of the invariant set theory in control and automation theory
is well documented. See, for instance, [5, 15, 16] and the references therein for
the applications of the invariant set theory in classical nonlinear discrete-time
control dynamical systems. The invariant set theory of nonlinear discrete-time
control dynamical systems with disturbance, which we abbreviate as disturbed
control dynamical system (DCDS) for the remainder of this paper, is relatively
new, at least in the realm of pure mathematics. In engineering, however, there
is already a substantial amount of literature devoted to this topic, such as
[3, 20, 21, 22, 23], to name a few.

The presence of the disturbance makes the DCDS more realistic and useful,
but at the same time, more difficult. In contrast to the classical undisturbed
counterpart, a DCDS cannot be reduced to an iterative dynamical system of
one endomorphism, or more informally, a closed-loop system. Hence, when
studying the DCDS, we are often forced to deal with the difficulties associated
with the open-loop systems. The purpose of multiple valued iterative dynamics
modeling (MVID modeling) is to overcome such difficulties by closing-up the
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open-loops so that the results analogous to those of undisturbed control dy-
namical systems can be established. The MVID modeling is based upon the
theory of multiple valued iterative dynamical systems (MVIDS). Tt is similar to
the method of set valued functions that was used successfully by [3] and [22] in
some reachability /controllability problems and their approximation problems.

The purpose of this paper is to establish the MVID modeling of DCDS and
investigate the invariant set theory of the MVIDS. The MVID modeling of
DCDS was introduced in [9], in somewhat primitive form. It was subsequently
improved by [10]. This paper improves it further through more rigorous treat-
ment (Section 2). The invariant set theory of the MVIDS was studied in [9]
and [10], too. However, the main contributions of [9] and [10] were confined to
the easier half of the invariant set theory of MVIDS, namely quasi-invariance
(positive-invariance)*. This paper deals with more difficult half, that is, full
invariance (Section 4 and Section 5). The full invariance is intimately related
to the steady state of the dynamics, or the long-term behavior of the orbits.
Also, a concrete, albeit elementary, numerical example will be discussed in the
appendix (Section 6).

This article is structured as follows. In Section 2, we review the typical
models of DCDS, and then, rigorously construct the MVID model (Proposition
2.2). The comparison between the traditional models of DCDS and the MVID
model was, for the most part, done in [10], but it will be re-examined here for
the sake of the self-sufficiency (Proposition 2.3). After a brief review on the
invariant set theory of the single valued iterative dynamical system in Section
3, we define and characterize various concepts of invariance for MVIDS in
Section 4 (Definition 4.6 and Theorem 4.9). We use the concepts of orbit-
chains (Definition 4.1) and predecessor operators (Definition 4.4) as the main
tools. The reachability/controllability problems of mazimal invariant sets follow
in Section 5. Finally, in Section 6, a simple MVIDS-specific example of the
infinite-step controllability and finite-step approximate control problem will be
presented as an appendix.

2. Modeling disturbed control dynamical systems

2.1. Classical models of nonlinear discrete-time control dynamical
systems with deterministic disturbance

It is well known that the classical non-linear time-invariant discrete-time
deterministic control dynamical system given by the pair of maps f: X xU —

IThe strong and weak quasi-invariance of MVIDS and the reachability/controllability
problems of the maximal quasi-invariant sets were discussed in the author’s earlier contri-
bution, [10]. The brief review of these topics we present here do not contain the technical
proofs.
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X and g: X — U, where
(2.1) {f (X, ug) F Trg,

g : Tk — Uk,
can be reduced the iterative dynamics of one endomorphism 1 : X — X where

(2.2) Vra e f(z,g(x)).

Such a reduction is valid because of the time-invariance. The input variable
u € U depends only on the current state x; € X, so the feedback control law
g : xr — ug is a well-defined single valued map. Putting f and g together,
therefore, we get the iterative dynamical system (2.2) of one endomorphism, 1.
This reduction and the invariant set theory of the iterative dynamical system
(2.2) are important tools in the classical applications of control and automation
theory such as model predictive control [6, 16, 17, 18].

These days, the dynamics of the systems (2.1) and (2.2) are attracting re-
newed attention, as evidenced by the large amount of modern literature on this
topic. See, for instance, 3, 15, 20, 21, 23] and the references therein. The focus
of more recent research, however, revolves around the time-dependent distur-
bance. In general, the disturbance does not apply to a given state the same way
at any given time, or it is not a disturbance at all. Therefore, neither f nor g
is well defined (single valued) function, under the presence of the disturbance.

One way to express the disturbance is to perturb the dynamics f and the
feedback control law g of the system (2.1), by inserting some extra variables
v € V and wy, € W, which are often called disturbance variables. That is,
(2.3) fw  (@k, U, Wi) = Tpy,

v ¢ (T, V) = ug.

Here, the control dynamics model (2.3) is slightly more general version than the
traditional method to model the DCDS, in a sense that the feedback control
map g is also perturbed. Compare the system (2.3) with those considered in
[15, 23], for instance.

The DCDS given by (2.3) can be reduced to the iterative dynamics of 1) :
XXV XxW—= X xV x W, where

¥ (z,0,w) = (f(2, (2, 0),w), 60, w)),

and ¢ : V. xW — V x W. The obvious advantage of this reduction is the
simplicity. However, this reduction is problematic in the following sense. The
map ¢ is, and should be, unknown, and thus, so is . In other words, we
cannot predict which disturbance would take place and how it would affect our
system, or it would not be a disturbance at all.
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Another well known method is to make the system stochastic, by making all
the variables time-dependent, as in [20], among others. That is,

ft : (x(t),u(t),t) — .I‘(t + 1)a
g+ (2(t), 1) = u(t).
This model can also be reduced to an iterative dynamics, through

[ (SU,t) = (f(:c,g(x,t),t),t + 1)7
where 1 : X x T'— X x T combines the dynamics of f and g of the system
(2.4). This time, the second component t — ¢t + 1 can be understood as the
natural elapse of time by one time unit.

By taking t € R, we get a continuous-time dynamical system, or a flow in
the phase space [2]. Upon generalizing the second component ¢ — ¢t + 1 to
ti >t + Agt, we get a variable-time-scale dynamical system [1], an interesting
mathematical topic on its own. In the viewpoint of control and automation
theory, however, there is a problem about the second approach, too. How the
disturbance at a given time affects the dynamics is, and should be, difficult to
predict. Consequently, the same problem that affected system (2.3) follows.

(2.4)

2.2. Multiple valued iterative dynamics (M'VID) models of disturbed
control dynamical systems (DCDS)

In this paper, we use an alternative approach to model the DCDS. We will
allow f and g in (2.1) to be multiple valued. Consequently, we get an iterative
dynamical system given by a multiple valued map ¥ (z) = f(z,g(x)). Let us
elaborate this idea as follows.

Definition 2.1 (Multiple Valued Map and Multiple Valued Iterative Dynam-
ics). Let X, Y be non-empty sets, and (X)), Z(Y) be their power sets. We
say a set function ¢ : Z(X) — LP(Y) is a multiple valued map (function) from
X toY if

(2.5) W(S) = J{v(@) :z e 8}

for all S C X. Here, t(z) is the abbreviation of ¢({z}). Let us denote the
set of all multiple valued maps from X to Y, as .Z(YX). In particular, if
X =Y, we call the iterative dynamical system in X given by the multiple

valued self-map ¢ € .#(X%X), the multiple valued iterative dynamical system
(MVIDS).

For the remainder of this paper, we will regard £(-) and .#(-) denote the
power set and the class of multiple valued maps as in Definition 2.1. In contrast
to the MVIDS, a classical iterative dynamical system of a single valued self-map
will be referred as a single valued iterative dynamical system (SVIDS), when it
becomes necessary to distinguish the two.

The first step toward the main results of this paper is to establish the follow-
ing: (1) how any DCDS can be modeled by a MVIDS, and (2) why the MVIDS
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turns out to be the most general model yet. The following propositions answer
these questions.

Proposition 2.2 (The Validity of MVID Modeling). Let X be a nonempty
set, which we will call the phase space, and whose elements we will call the
states. Then, any DCDS can be modeled as an MVIDS in a such a way that
each iterate of the MVIDS consists precisely of all possible outcomes that we
must account for. Let us call this process a multiple valued iterative dynamics
modeling (MVID modeling) of the given DCDS.

Proposition 2.3 (The Generality of MVID Modeling [10]). Let U, V, W
and X be nonempty sets, and let P(X) be the power set of X. Also, let
f: X XxUXW = X andg: X xV — U be maps. Then the set function
P P(X) = P(X) given by

(2.6) PY(A) ={f(z,g9(x,v),w) :veVwe W,z e A}

satisfies the condition (2.5), and thus, 1 € 4 (X™X).
Also, if T, U and X are nonempty sets, the set function ¢ : P(X) — P(X)
given by

(2.7) Y(A) ={f(z,g(z,1),t) : t €T, w € A}
satisfies the condition (2.5) as well, consequently yielding 1 € 4 (X*X).

The proof of Proposition 2.3 can be found in [10]. About Proposition 2.2,
let us paraphrase it and elaborate it through the following observations. They
are rather trivial in terms of depth, but their implication is significant in that
they validate the very model that this paper is based upon.

Further Comments about Proposition 2.2. Given initial state x € X, let ¢(x)
C X be the set of all possible outcomes of the DCDS that originate from .
Now, define a set function ¢ : Z(X) — £(X) by the equality (2.5). Because
the set function ¢ was defined through the equality (2.5), ¥ € .#(X*) follows
immediately from Definition 2.1.

Repeating the same process to each element of ¥(x), we get the second
iteration of the DCDS. Continuing this process, we get a MVIDS in X given
by ¢ € .#(XX), which models the given discrete-time dynamical system with
deterministic disturbance. Furthermore, from the construction of ¢, it is clear
that each ¥ (z) consists of all possible outcomes that originated from z in k-th
step, and contains nothing else.

Let us call the MVIDS given by the iteration of 1 € .#(X*), the multiple
valued iterative dynamics model (MVID model) of the given DCDS. O

3. Invariant set theory of single valued iterative dynamical systems
3.1. Invariance and maximal invariance

In, this section, we review the invariance concept of SVIDS.
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Definition 3.1 (Invariance and Quasi-invariance). Let X be a non-empty set,
and let 1 : X — X. A set S C X is said to be invariant under ¢ if ¥(S) = S.
Also, S is said to be quasi-invariant, if 1(S) C S, or equivalently, S C ¥~1(S).

Proposition 3.2 (Quasi-invariance and Positive Invariance). Let X be a non-
empty set, and let ¢ : X — X. Then, a set S C X is quasi-invariant if and
only if it is positive-invariant. That is, 1(S) C S if and only if xo € S implies
that ), = *(x) € S for every k € Z7.

The proof of Proposition 3.2 is trivially simple, so we leave it to the readers.
Instead, we state and prove a stronger theorem in Subsection 4.3 (Theorem
4.9).

Definition 3.3 (Maximal Invariant Sets of SVIDS). Let X and Y be non-
empty sets where Y C X, and let ¢ : X — X. We define the locally maximal

invariant subset M(Y') of Y, and the locally mazimal quasi-invariant subset
M*F(Y) of Y by,

MH(Y) =S C Y :9(S) C S}

In the special case, ¥ = X, we call M(X), the (globally) maximal invariant
set. When there is no danger of confusion, we will use the plural term, mazimal
invariant sets to refer to all three at the same time.

{M(Y) —U{S Y :(S) = S},

The proof of the maximality, invariance and quasi-invariance are easy and
left to the readers. Instead, we prove a stronger result in Subsection 5.1 (Lemma
5.2).

3.2. Controllability problems of maximal invariant sets

Definition 3.3 ensures the existence of the maximal invariant sets, but it does
not help us determining them algorithmically. Under some suitable conditions,
it is known that the maximal invariant sets are oo-step controllable [10, 14].
Hence, the finite-step approximate control problems and their optimization
problems are well-posed. Moreover, the approximation can be done through
the following iterative algorithms. See [10, 14] for more detail.

Proposition 3.4 (Controllability of Locally Maximal Quasi-invariant Sets).
Let X and Y be nonempty sets, Y C X, and ¢ : X — X. Suppose further that
Yo=Y and Y F =Y Ny~ (Y1), Then,

YOSy 'oy oo | YTF=MN(Y).
k=0

Theorem 3.5 (Controllability of Locally Maximal Full-invariant Sets [10, 14]).
Let X be a non-empty topological space and i : X — X. Let'Y be a nonempty
subspace of X. Suppose further that YO =Y, Y* =Y np(YF™1), and Y% =
YN wil(Yf(kfl)). Finally, suppose that one of the following two conditions
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hold: either (1) Y is compact and |y : Y — X is continuous, or (2) |y :
Y — X is finite-to-one. Then,

Yoo YNy Ho(yiny 2 ﬂ YENY k) = M(Y).

4. Multiple valued iterative dynamical systems
4.1. Orbit-chains

We begin discussing MVIDS with its most important aspect, the orbit-
behavior. The orbits of SVIDS are given by the iterative dynamics of individual
states. The corresponding quantities of MVIDS, however, are not so simple.

Definition 4.1 (Orbit-chains). Let X be a nonempty set and ¢ € .4 (XX).
Let Y C X and 29 €Y.

A. Let n € Z*. We call a finite sequence (z)_, such that zj € ¢ (xp_1)NY
for each k € {1,...,n}, a forward orbit-chain of xo of length n in Y, and
write (zx)f_y € O™ (xo 1 Y). If O™ (x9 : Y) = 0" (xp : X), then we denote
xg € FMY). If O"(xo : Y) # 0, then we say xo admits a forward orbit-chain
of zy of length n in Y, and denote zo € F2(Y).

B. We call an infinite sequence (xy)72 , such that x € ¥(x,_1)NY for each k €
Z*, an infinite forward orbit-chain of xo in'Y, and write (zx)7_, € OF(zo: Y).
If 0F(zg:Y) = 0% (x: X), then we write zg € F(Y). If OF(z9:Y) # 0,
then we say x¢ admits an infinite forward orbit-chain of xy in Y, and denote
xo € Fuo(Y). Finally, if 0™(zo : Y) # 0 for every n € Z*, then we denote
xo € .F;ZO(Y)

C. Let n € Z*. We call a finite sequence (z_j)}_, such that x_g_1) €
Y(x_k) NY for each k € {1,...,n}, a backward orbit-chain of xy of length n
in'Y, and write (z_g)p_o € O "(zo: Y). If 07" (x0:Y) # 0, then we say
admits a backward orbit-chain of z¢ of length n in Y, and denote z¢ € B"(Y).

D. We call an infinite sequence (x_x)32 such that z_,_1) € ¥(z_x) NY for
each k € Z*, an infinite backward orbit-chain of zo in'Y, and write (z_j)}_, €
O (xg:Y). If O~ (2 :Y) # 0, then we say xo admits an infinite backward
orbit-chain of 2o in Y, and denote 2 € B (Y’). Finally, if 27 admits a backward
orbit-chain of every finite length in Y, that is, 6 "(z¢ : Y) # 0 for every
n € Z7T, then let us write g € B¥(Y).

Needless to say, we get the following immediate result.

Proposition 4.2. Let X be a nonempty set and ¢ € #(XX). Then for
any Z C'Y C X, we must have F¥(Z) C FX(Y), Fi(Z) c F;(Y), and
B (Z) c BY(Y), wherev=n€Z", v=o00, orv=uw.

In trivial case (n = 0), let us write (zo) € 6°(Y) and FO(Y) = FO(Y) =
B°(Y) = Y. Also, we can tentatively write 2o € FX(Y) if 0"(xg : Y) =
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O™ (xg : X) for every n € Z". Under these additional trivialities, we get the
following result.

Lemma 4.3 (Descending Chain Lemma). Let X be a nonempty set and ¢ €
M (XX). Then for any Y C X, we get

(4.1) FIY)DF(Y) D DFE(Y) = FL(Y),
(4.2) FolY) D Fu(Y) D D FR(Y) D Fu(Y),
(4.3) BYY)> B (Y)D--- 2 B>(Y) D B¥(Y).

Sketch of Proof. The descending chain-relations are obvious from the defini-
tions. Only the lone equality deserves our attention. Let zy € F°(Y) and
choose any (z5)72, € 07 (x : X). Then, for each n € Z1, (xx)f_, € 0" (0 :
X) = O0"(xg : Y), and thus, z, € Y. Hence, o € F¥(Y). This proves,
F(Y) C F¥(Y), which then leads to the equality. O

In the viewpoint of the MVID modeling of DCDS, we can regard each orbit-
chain in X as one possible chain of events up to n iterations of the dynamics.
Each orbit-chain in Y, on the other hand, can be regarded as one possible
chain of events that takes place entirely in Y. In other words, the concept of
the orbit-chains connects the set-dynamics given by MVIDS and the chain of
actual events of the DCDS expressed by MVID modeling.

4.2. Pre-image sets and predecessor operators

For the classical theory of SVIDS, the predecessor operator [5, 15, 16, 23, 24]
of a single valued iterative dynamical system given by the endomorphism ¥ :
X — X is nothing more than the pre-image map, ¥~ ! : Z(X) — Z(X),
=1 € .#(XX). The pre-images and predecessors of MVIDS, however, are not
so straightforward, as we will see in the following definition.

Definition 4.4 (Pre-images and Predecessors). Let X be a nonempty set and
Y € M (XYX). Given nonempty subset S C X, we define the strong pre-image
set of S as,

(4.4) Y7US) = {xr € X :¢(x) C S}.
In general, we define the k-th strong pre-image set of S by
(4.5) Y7R(S) ={z e X :¢¥(x) C S}.

We call the set function ;! : 2(X) — P(X), the strong predecessor operator.
Similarly, we define the weak pre-image set of S as,

(4.6) vt (S) ={zx e X y(x)NS # B}
Also, we define the k-th weak pre-image set in similar fashion.
(4.7) Y F(S) = {z € X : pF(x) N S # 0}.

Let us call the set function 9 : 2(X) — P2(X), the weak predecessor oper-
ator.
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In the viewpoint of the DCDS, the strong and the weak pre-image sets of
the MVIDS given by the multiple valued self-map ¢ € .#(X*X) can be viewed
as follows.

Remark 4.5. The strong pre-image set ¢;1(S) consists of the input states that
must yield the outputs in S, while the weak pre-image set 1,1(S) consists of
the input states that can yield the outputs in S.

Remark 4.5 tells us that the strong pre-images can be used for predictive
control problems, where one looks for input states that ensure the desired out-
puts; while the weak pre-images are suitable for investigative control problems,
where one looks for all possible input states that could have caused the current
state.

Another interesting distinction between the strong and the weak predecessor
operators is that the latter operator 1! is a multiple valued self-map in X,
while the latter operator 7t is not [10]. The fact that v ! € .#(XX) will
turn out useful when characterizing the full-invariance of MVIDS (Theorem
5.4).

4.3. Invariant sets of multiple valued iterative dynamical systems
We are now ready to clarify the invariance concepts of MVID models.

Definition 4.6 (Invariant Sets of MVIDS). Let X be a nonempty set and
) CM(XY).

A. We say S C X is strongly quasi-invariant (positive-invariant) under v if

(4.8) S c iy H(S).

B. We say S C X is weakly quasi-invariant (positive-invariant) under ¢ if

(4.9) S C 1y (9).

C. We say S C X is strongly invariant (full-invariant) under ¢ if
(4.10) S cp(S) Ny (S).

D. We say S C X is weakly invariant (full-invariant) under 1 if
(4.11) S c(S)Ny,t(S).

When there is no danger of confusion, we will abuse the terms invariance and
invariant sets to denote all of the above at the same time. When it becomes
necessary, on the contrary, we will use the terms full-invariance to emphasize
the distinction from the quasi-invariance.

The following proposition states that the inequalities (4.8) and (4.10) in
Definition 4.6 can be expressed in more conservative forms as in SVIDS case
(c.f. Definition 3.1).
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Proposition 4.7 (Alternative Definitions of Strong Invariance and Strong
Quasi-invariance). Let X be a nonempty set and o C M (XX). Let S C X
and S # (. Then, S is strongly quasi-invariant under v if and only if Y(S) C S,
and it is strongly invariant under v if and only if (S) = S.

Proof. The equivalence relation on the strong quasi-invariance can be proved
as follows.

(4.12) Syl (S) = Vae S vx)CS
— yY(S) CS.

Now, combining the equivalence relation (4.12) and the set-inequality (4.10),
we get the following result.

S c(S) N 1(S) <= SN(S) and S C ;1 (S)
< SNy(S) and Y(S) C S
= YP(S)=S5.
Hence, the equivalence relation on the strong full-invariance follows. [l

Another interesting observation one can make is the following connection
between the strong quasi-invariance and the weak predecessor.

Proposition 4.8 (The Insulation Condition [12]). Let X be a nonempty set
and ¢ C M (XX). Let S C X and S # 0. Then X \ S is strongly quasi-
invariant under ¢ if and only if 1,1 (S) C S.

Proposition 4.8 will not be used to prove the main results of this paper, so
we omit its proof for brevity. For more detail, see [12].

4.4. Characterizing invariant sets

The first main theorem of this paper is the characterization of various types
of the invariant sets of MVIDS, in terms of the dynamical behavior of the
system.

Theorem 4.9 (The Characterization Theorem for Invariance). Let X be a
nonempty set and 1 € M (XX). Let S C X.

A (Strong Quasi-invariance). The following conditions are equivalent.

(4.13) S cyH(S).

(4.14) (S) C 8.

(4.15) xo € S = Vk € ZT ) (x0) C S.
(4.16) S = F¥(S).

B (Weak Quasi-invariance). The following conditions are equivalent.

(4.17) S t(S).



MVID MODELS OF DISTURBED CONTROL SYSTEMS 27

(4.18) zo € S = Vk € ZT pF(x0) N S # 0.
(4.19) S = F2(S).

C (Strong Full-invariance). The following conditions are equivalent.

(4.20) S c(S) Ny H(S).

(4.21) ¥»(S) = S.
(4.22) zo € S = Vk € ZT p*(x0) € S and " (x0) NS # 0.
(4.23) S = Fe(S)nB“(S).

D (Weak Full-invariance). The following conditions are equivalent.

(4.24) S C(S) N, (S).
(4.25) xo €S = Vk € ZT pF(x0) NS # 0 and " (z0) NS # 0.
(4.26) S = Fe(S)NBY(S).

Proof of Theorem 4.9.A. The equivalence between (4.13) and (4.14) is estab-
lished in Proposition 4.7. Assume (4.14) and let zop € S. Then, ¥!(z9) C S
from (4.14). Applying ¢ again, we get 1?(zg) = ¥(¥(x0)) C ¥(S) C S. Re-
peating this process inductively, we get (4.15).

Now, assume (4.15). Because 0 (zg : S) C 0T (x¢ : X) is always true, we
need only to prove the other inclusion. Let 2o € S and (z4)72, € O (zo : X).
Then, z1 € ¥(x9) C S. Applying ¢ again, we get x5 € (1) C ¥?(w) C S.
Repeating this process inductively, we get x € *(x¢) C S for all k € Z7.
Hence, ()72, € 01 (20 : S), and thus, (4.16) follows.

Finally, assume (4.16). Suppose that S ¢ ¥ 1(S). That is, for some zo € S,
we can find 21 € ¥(xg) but 21 ¢ S. Choosing any x5 € ¥(x1), 23 € ¥(22), and
so on, we get (25)52y C OF (2o : X)\ O (z0 : S). This contradicts (4.16), and
consequently (4.13) follows. O

Proof of Theorem 4.9.B. Assume (4.17) and let zyp € S. Then, zg € S C
1,1 (S), so there exists a certain z; € 1(x9) N S. Do the same to 1 € S to get
x9 € YP(x1) NS. Repeating this process, we get an infinite forward orbit-chain
()72 € OF(z0 : S), and thus (4.19) follows. Now, assume (4.19), that is,
there exists a certain (z1)3, € 0% (z : S). Consequently, ), € ¢F () for
each k € Z*, and thus (4.18) follows. Finally, assume (4.18). Then for any
zo € S, we must have ¢(z9) NS # 0, and thus zo € ¥,;*(S). Since z¢ is
arbitrary, (4.17) follows. O

Proof of Theorem 4.9.C. Proposition 4.7 proves the equivalence between (4.20)
and (4.21). Assume (4.20) and let 2o € S. Then, we must have 01 (zo : S) =
0% (zo: X) for all k € Z* because of Theorem 4.9.A. Furthermore, due to the
fact that S C ¥(95), there exists a certain z_; € S such that xg € ¥(x_1).
Applying the same argument, we cain find z_5 € S such that x_1 € ¥(z_2).
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Repeating this process, we get an infinite backward orbit-chain (z_z)32, in S,
and thus, 6~ (z¢ : S) # 0. Hence, (4.23) follows.

Next, we assume (4.23) and let zp € S. Then, 01 (zg : S) = O (20 : X)
implies ¥*(x) C S for all k € Z*, as we saw in the proof of Theorem 4.9.A. The
second part, 0~ (zg : S) # () implies that there exists an infinite backward orbit-
chain (z_j)%2, in S. Hence, for all k € Z*, we must have zq € ¢*(z_x) N S,
and thus, z_j € ¥, (29) NS # 0. Consequently, we get (4.22).

Finally, let use assume (4.22). Choose any o € S. Then, zo € ¥;1(9),
because S C 1 1(S) (Theorem 4.9.A). Also, because of 1, (zg) NS # 0,
there must be a certain x_; € S such that zo € ¢¥(z_1). Hence, oy € 9(95).
Because zy was selected arbitrarily, we conclude that S C (S), and thus,
(4.20) follows. O

Proof of Theorem 4.9.D. Assume (4.24) and let oy € S. From Theorem 4.9.B,
we get 0T (zg : S) # 0. From the other condition, S C ¥(S), we can find
x_1 € S such that zg € ¥(z_1). From the same argument, we get z_o € S
such that z_; € 1(x_3). Repeating this process, we get an infinite backward
orbit-chain (z_x)32, in S. Hence, &~ (zo : S) # 0, as well, and thus, (4.26)
follows.

The proof that (4.26) implies (4.25) is similar to the corresponding step of
the proof of Theorem 4.9.C.

For the final step, assume (4.25). We already saw that S C 1,1(S) when
proving Theorem 4.9.B. Choose any xzg € S. Then, there must be a certain
xr_1 € ¥, 1(S)NS, because the latter is nonempty. Thus, we get zg € ¥(z_1) C
(S). Hence, (4.24) follows. O

5. Maximal invariant sets of multiple valued iterative dynamical
systems

5.1. Maximal invariant sets

We define the maximal invariant sets of MVIDS by generalizing Definition
3.3 as follows.

Definition 5.1 (Maximal Invariant Sets of MVIDS). Let X be a nonempty
set and ¢ € A (XX). Let Y C X and Y # 0.

A. The strong locally mazimal quasi-invariant subset MT(Y) of Y under ¢ is
defined by the union of all strongly quasi-invariant subsets of Y. That is,

(5.1) MEY) = J{Scy:Scy (9}

B. The weak locally mazimal quasi-invariant subset ME(Y) of Y under 1 is
defined by the union of all weakly quasi-invariant subsets of Y. That is,

(5.2) MEY) = J{Scy:Scy,'(9)}
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C. The strong locally mazimal invariant subset Ms(Y) of Y under ¢ is defined
by the union of all strongly invariant subsets of Y. That is,

(5.3) M(YV) =S cY:8ce(S)ny; (9)}

D. The weak locally mazimal invariant subset M., (Y') of Y under 1 is defined
by the union of all weakly invariant subsets of Y. That is,

(5.4) My(Y) = J{SCY:Scp(S)ne,' (9}

When Y = X, then we drop the term locally from Definition 5.1, or some-
times replace it with globally. Again, when there is no danger of confusion, we
abuse the plural term mazimal invariant sets to denote all of them at the same
time.

The following lemma justifies our selection of the terms.

Lemma 5.2 (The Justification Lemma for Maximal Invariance). Let X be
a nonempty set and ¢ € #(XX). Then given non-empty subset Y of X,
the strong/weak locally maximal quasi-invariant/full-invariant subsets of Y
are indeed mazimal (in terms of the set inclusion) and strong/weak quasi-
invariant/full-invariant.

Sketch of Proof. It is obvious that MT(Y), M} (Y), Ms(Y), M, (Y) CY and
that they are indeed maximal in terms of the set inclusion, because they were
defined by the union of all strongly/weakly quasi-invariant/full-invariant sub-
sets of Y. All there is left to prove, therefore, is the invariance.

(5.5) r € MI(Y)=z €S, where 3S C Y,%(S) C S
= (x) CY(S) C S c MHY).
(5.6) rEMLY)=2€S, where SCY,SCy,'(S)
=0 #£Y)NS CYlx) N ME(Y).
(5.7) reEM(Y)=>x€S, where S CY,S C (5)
= Jy € Y such that x € ¥(y) C p(M,(Y)).
(5.8) x € My(Y)=x €S, where SCY,S C(S)
= Jy € Y such that z € ¥(y) C (M (Y)).
The statements (5.5) and (5.6) prove the strong and the weak quasi-invariance,

respectively. Combining them with the latter statements (5.7) and (5.8), we
get the full-invariance. (I

We conclude this subsection with the following obvious observation.

Proposition 5.3. Let X and Y be nonempty sets such that Y C X. Let
€ M(XX). Then, Ms(Y) = Ms(MI(Y)) and My (Y) = My(ME(Y)).
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Sketch of Proof. The D part is obvious. The C part follows from the fact that
each strong/weak full-invariant subset of Y is strong/weak quasi-invariant as
well, and thus belong to MF(Y) or M} (Y) as well. O

5.2. Characterizing maximal invariant sets

The second main result of this paper is the characterization theorem of the
maximal invariant sets. As in Theorem 4.9, we characterize them in terms of
the dynamics of the system.

Theorem 5.4 (The Characterization Theorem for Maximal Invariance). Let
X be a nonempty set and 1 € M4 (XX). Then, given non-empty subset Y of
X, we get the following results.

(5.9) MI(Y) = F2(Y).

(5.10) ML (Y) = Fo(Y).

(5.11) M(Y) = B (F; ( )-

(5.12) My (Y) = B*(F(Y)) = B*(Y) N F(Y).

Proof of Theorem 5.4, Part 1: Equality (5.9). First, assume xo € M1 (Y), that
is, there is a certain strongly quasi-invariant subset S of Y such that zg €
S. Then, from Theorem 4.9.A and Proposition 4.2, we conclude that xy €
F@(S) c F¥(Y). Hence, we get the first inclusion, MF(Y) C F¥(Y).
Conversely, assume zo € F¥(Y), that is, every infinite forward orbit-chain
of o in X must stay in Y. Choose any z1 € ¥(zg) C ¥(F¥(Y)). Then,
every infinite forward-orbit-chain ()52, of z1 in X gives rise to the infinite
forward orbit-chain (zj)7°,, which must stay in Y. Therefore, 0 (z; : X) =
Ot (xz1 : Y), and thus, z; € F¥(Y). Because the selection of zo € F¥(Y)
and z1 € ¥(zp) was arbitrary, we conclude that ¢(F~(Y)) C F&(Y), that is,
F¢(Y) is a strongly quasi-invariant subset of Y, and thus is must be contained
in the locally maximal quasi-invariant subset M7 (Y'). Hence, we get the other
direction, F¥(Y) C MF(Y), as well. O

Proof of Theorem 5.4, Part 2: Equality (5.10). It is easy to see that the inclu-
sion M} (Y) C F2(Y) follows from Theorem 4.9.B, just as MT(Y) C Fu(Y)
followed from Theorem 4.9.A. Let us consider the other direction, now.

Let zp € F2(Y), that is, there exists a certain infinite forward orbit-
chain (zx)32, in Y. Then, we can easily see that x1 € ¢(z¢) N F2(Y),
because (z5)72, € O (21 : Y). Therefore, ¥(z9) N F2(Y) # 0, and thus
zo € Y (F¥(Y)). Because the selection of xo was arbitrary, we conclude that
F2(Y) C g (F2(Y)), and thus, F2(Y) ¢ ME(Y). O

Proof of Theorem 5.4, Part 3: Equality (5.11). From (5.9) and Proposition 5.3,
we get

(5.13) M (V) = M (M (Y)) = M(FZ (V).
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We need only to prove, therefore,
(5.14) M,(2) = B*(2),

when Z is strongly quasi-invariant.

The inclusion My(Z) C B¥(Z) follows from Theorem 4.9.C, through the
argument similar to the corresponding parts of the proof of (5.9) and (5.10).
We now show the other inclusion by proving that B“(Z) is strongly invariant,
and thus, included in the strong maximal invariant set.

Let zg € B¥(Z), where ¢/(Z) C Z. That is, (x—_x)5>y € 0 (xo : Z). Choose
any o1 € ¢¥(zo). Then, (x_;)2_, € O~ (21 : Z), because Z is strongly quasi-
invariant. Hence, 1 € B¥(Z). Because this holds for all z; € v(zg) for any
xo € BY(Z), we must have

(5.15) B*(2) C v (B*(2)).

Furthermore, starting the infinite backward orbit-chain from z_1, we get
(k)i € O (1 : 2).

Therefore, xg € ¥(x_1) C Y(BY(Z)). Since xg is arbitrary, we get

(5.16) BY(Z) c (B (Z)).

Combining (5.15) and (5.16), we get the strong quasi-invariance of B (7).
Consequently, we get the other inclusion, M;(Z) D B¥(Z), too. This complete
the proof of (5.14). The desired result, (5.11), follows from (5.9), (5.13), (5.14),
and the fact that F¥(Y) is strongly quasi-invariant (Lemma 5.2). O

Proof of Theorem 5.4, Part 4: Equality (5.12). Tt is easy to see that

My (Y) = Moy (ME(Y)) .- Proposition 5.3,
= My (F5(Y)) - Bquality (5.10),
C B (Fy(Y)) " Theorem 4.9.D,
CB(Y)NFu(Y) *.» Proposition 4.2 & Lemma 4.3.

We will show the other inclusion by proving B (Y)NF%(Y) is weakly invariant.
Suppose zg € B¥(Y) N F2(Y). In particular, zg € F¥(Y). Now, F2(Y)

is weakly quasi-invariant because of (5.10) and Lemma 5.2. Therefore, there

exists a certain x1 € Y such that

(5.17) z1 € P(xo) NFy(Y).

Now, because xg € B“(Y), there is a certain infinite backward orbit-chain
(k)52 in Y. Starting from x1, therefore, we get (z_x)32 _, € 0~ (z1:Y).
That is,

(5.18) 21 € ¥(wo) N B(Y).
Combining (5.17) and (5.18), we get ¥ (zo) N (B*(Y)NFL(Y)) # 0. Or,
(5.19) o € 1y, (BY(Y) N Fy(Y)).

w
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On the other hand, because zg € B¥(Y), we can find a certain z_; € Y
such that xg € ¥(x_1). Starting the forward and the backward iterations
of ¢ from x_;, we get the infinite forward and the backward orbit-chains,
()2, € O (x_1:Y) and (x_p)32, € O~ (x_1 : Y). Therefore,

(5.20) zo € P(z—1) CY(B(Y)NFL(Y)).

Because zp was selected arbitrarily, the combination of (5.19) and (5.20)
yields,

B2(Y)NFp(Y) C g, (B*(Y) N F(Y) N (BY(Y) N F(Y)).

That is, BY(Y) N F&(Y) is weakly invariant. Hence, the desired inclusion
BY(Y)NF2(Y) C My (Y) follows. O

5.3. Controllability problems of locally maximal invariant sets

The third main result of this paper is to set up the oco-step controllability
problems of the maximal invariant sets and prove that their well-posedness.
Our definitions of the maximal invariant sets in Definition 5.1 ensures the
existence, as well as the maximality and the invariance, in contrast to some
other methods [4, 7, 8, 19]. However, Definition 5.1 does not ease the difficulty
in identifying or approximating the maximal invariant sets at all. Theorem 5.4
helps, but following the orbit-chains of large number of (possibly infinitely many
or even uncountably many) individual points is still too much to handle in any
realistic applications. Theorem 5.7 resolves this difficulty, by providing iterative
methods that yield the desired maximal invariant sets. We need, however, the
following definition and lemma before expressing and proving Theorem 5.7.

Definition 5.5 (Controllable/Reachable Sets). Let X be a nonempty set and
e M(XX). Let ZCY C X. We define the n-step strongly controllable set
Y™™, the n-step weakly controllable set Y, ™, and the n-step reachable set Y™,
of Y as follows.

(5.21) Y=Y, Yo=Y e (v,
(5.22) Yo=Y, Yo=Yy Yh,
(5.23) YOV, Y=Yy,

where n € ZT. Furthermore, let us denote

(524) Y;foo _ ﬁ Y*an7 YJOO — ﬁ YJ”’ Y = ﬁ Y™,
n=0 n=0

n=0

Lemma 5.6 (The Justification Lemma for Controllability /Reachability). Let
X be a nonempty set and ¢ € M (XX). Then, given Y C X, the following
results hold.

(5.25) Y= FMY), nef{0,1,2,...}.
(5.26) Y= FLY), ne{0,1,2,...}.
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(5.27) Y =B"(Y), ne{0,1,2,...}.

Proof. We proceed with the induction. There is nothing to prove when n = 0.
Suppose that (5.25), (5.26) and (5.27) are true for n = k — 1.

Now, note that 2o € Y, * = Y N7 1 (Y ~F=D) =V Ny 7Y (FF1(Y)) if and
only if 2o € Y and w(xg) C FF71(Y). Now, ¥(z9) C FF1(Y) means that
every forward iterates of every x; € ¢(xg) stays in Y up to k — 1 iterations.
Starting the iteration from xg € Y, therefore, we get all the forward iterates
xo € Y up to k iterations. Hence, we conclude that zo € F¥(Y) is equivalent
to zg € Y and ¥(xg) C FF1(Y), and consequently to o € Y, 7*. Since the
selection of xy was arbitrary, we get ;7% = F¥(Y'). This proves (5.25).

Likewise, let us note that zo € Y, * = Yy L (Y~ = Yy Y(FE-1(Y))
if and only if zg € Y and ¥(z0) N FF~1(Y) # (. That is, 7o € Y and there is
a certain (v1,...,2) € 0" 1(zy : Y). This is the same as (zg,x1,...,7x) €
O™ (x1 :Y). Hence, we conclude that z¢ € F£(Y) is equivalent to x5 € Y and
P(wg) N FE=1(Y) # ), and consequently to zo € Y,;*. Thus, Y, * = FF(Y)
follows. This proves (5.26).

Finally, note that zop € Y = Y Ny(YE™1) = Y ny(B*~1(Y)) if and only
if zo € Y and 29 € ¢(z_1) where x_; € B*¥}(Y). This is the same as
the existence of a backward orbit-chain (xg,z_1,...2_x) € 6 F(z¢ : Y), by
starting the backward iteration from xg € Y. Hence, we get xg € B¥(Y) if and
only if g € Y and z¢ € ¥(z_1) C ¥(B¥1(Y)), and consequently to z¢ € Y,*.
Thus, we get Y,* = B¥(Y). This proves (5.27). O

We are now ready to state and prove the third main theorem of this paper.

Theorem 5.7 (The Controllability Theorem). Let X be a nonempty set and
Ve MXY). LetY C X.

A. ForanyY C X,

(5.28) YOOV ' oY 2o DY = ME(Y).

B. Suppose that v is finitely-many-valued in 'Y, that is, (y) is a finite set for
ally € Y. Then,

(5.29) YOOV, toY, 20 DY, =MLY).

C. Suppose that 1, is finitely-many-valued in Y. Then,
(5.30) (Y2)" > (Y7 D (Y722 0 D (V7)™ = My(Y).

S S

D. Suppose that 1 and 1, are both finitely-many-valued in Y. Then,
(531) YO XNy, Ho(¥?*nY, %) D 2> (Y*NY, ) = My,Y).

Note that the equality (5.23) of Definition 5.5 was used in the part C of
Theorem 5.7. That is, by putting Y% in place of Y in Equality (5.23), we get
(V790 =Y, and (Y, %) =Y, ' Ny(YI~1). Equality (5.30) includes only the

S S



34 BYUNGIK KAHNG

spacial cases where j = 7 for each 7. All i’s and j’s must be considered in the
proof, however.

Proof of Theorem 5.7, the first part. Lemma 5.6 and Theorem 5.4 tell us that
the descending chains (5.28), (5.29) and (5.31) are the same as (4.1), (4.2) and
(4.3) of Lemma 4.3, respectively, except for the last equalities of (5.29) and
(5.31). This observation proves Theorem 5.7.A, and leaves only the following
two equalities from completing the proof of Theorem 5.7.B and Theorem 5.7.D.
They are,

(5.32) Fu (V) =Fo(Y)
and
(5.33) B>(Y) =B“(Y).

Note that Lemma 4.3 tells us that the equality (5.32) is equivalent to the last
equality of (5.29), and the combination of the equalities (5.32) and (5.33) yields

(5.34) BXY)NFX(Y)=8BY)NnFo(Y),

which is equivalent to the last equality of (5.31).

Suppose that ¢ is finitely-many-valued in Y. Let xo € F°(Y), that is,
O™(xg : Y) # 0 for all n € ZT. Choose one forward orbit-chain of zo of
length n in Y for each n € ZT. Among these infinitely many forward orbit-
chains of z¢ in Y, infinitely many of them must share the same first component
x1 € ¥(xo) NY, because 1 is finitely-many-valued. These result in infinitely
many forward orbit-chains of z; in Y. We can choose x5 € 9(z1) N'Y through
the same process, because 1¥(x1) is a finite set. Because v is finitely-many-
valued, we can repeat the same argument to get an infinite forward orbit-chain
(k)32 € OF (20 : Y). Therefore, o € F2(Y), and thus, F2(Y) C Fo(Y).
Because the other direction is always true (Lemma 4.3), the equality (5.32)
follows. This completes the proof of Theorem 5.7.B.

Now, suppose that both ¢ and v ! is finitely-many-valued. We already
showed (5.32) when 1) is finitely-many-valued. The proof of (5.33) when ' is
finitely-many-valued is analogous to the former, where the only difference being
the use of the backward orbit-chains instead of the forward orbit-chains. Con-
sequently, we get the equality (5.34), and this completes the proof of Theorem
5.7.D. O

The use of so called the infinite pigeon hole principle in the first part of the
proof of Theorem 5.7 was inspired by [19].

Proof of Theorem 5.7, the second part. Suppose that ¢ is finitely-many-valued
in Y. From the equalities (5.9) and (5.11) of Theorem 5.4 and the equality
(5.33), we get

(5.35) M (Y) = B (MI(Y)) = BX(MI(Y)).



MVID MODELS OF DISTURBED CONTROL SYSTEMS 35

Note that we replaced Y by MT(Y) in (5.33) to get the second equality of
(5.35). We are allowed to do this, because M (Y) C Y, and therefore, 1 is
finitely-many-valued in M7 (Y), too.

Applying Lemma 5.6 and (5.35) to Lemma 4.3, we get a descending chain,

(5.36) MIY) O MW Do ME(Y)2 D - D ME(Y)® = M (Y).

Applying (5.28) to (5.36), we get the following double chain, where each arrow
(—) stands for the set inclusion (D):

(5.37)

(¥9)? —— (Y —— () (¥)>
| | | |
¥, —— (Y7 —— ()7 (Yo h)ee
| I |
(¥,?)! —— (V7)) —— (Y%7 (Y, 2)
| | |

SN
| | I
(¥7®) —— (V7)) —— (¥o>)? (Yooo)

Taking the diagonal chain of the commutative diagram (5.30), we get the de-
scending chain,
(Yso)o ) (Ysil)l ) (}/372)2 D) (Y*OO)OO’

S

whose last entry satisfies (Y, ) = M(Y), because of (5.28) and (5.36).
This completes the proof of Theorem 5.7.C. (I

Theorem 5.7 tells us that the infinite-step controllability problem and the
finite-approximate control problem are always well-posed for locally maximal
strongly quasi-invariant sets, and gives us some sufficient conditions for those
problems to be well-posed for the other maximal invariant sets. Also, if we
disregard the approximation part by the descending chains of the finite-step
controllable/reachable sets, we can re-express Theorem 5.7 in more concise
(albeit less useful) form as follows.

Corollary 5.8. Let X be a nonempty set and o € .#(XX). Then, given
Y C X, the following results hold.

(5.38) MEY) = (v
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FIGURE 6.1 FIGURE 6.2
(5.39) ME(Y) = fjoww”m.
(5.40) M) = f_ﬁow" ( @O%WY)) .
(5.41) M) = fj (6" (¥) N (Y))

Proof. The proof of Corollary 5.8 follows from Theorem 5.7. It is elementary
but tedious, so we leave it to the interested readers. O

6. Appendix: Examples

In this section, we discuss some simple MVIDS-specific examples of the
infinite-step controllability and finite-step approximate control problems of the
maximal invariant sets. Let X C R™ be a phase space. Suppose that a map
f : X — X is a linear contraction, so that the iteration of f on X would
yield a single point. Let us consider two types of disturbances. Let the first
disturbance be the random disturbance around the image points that blurs the
outcomes (Figure 6.1). In terms of the set-dynamics, however, this disturbance
can be regarded as nothing but a damping of the contraction (Figure 6.2).
Now, let the second disturbance be the competition between more than one
attractors.

Figure 6.3 and Figure 6.4 visualize the effects of the competing attractors and
the maximal full-invariant set of this dynamics, respectively. It was possible
to avoid the complication caused by the first disturbance, as illustrated in
Figure 6.2. However, the second disturbance made the DCDS very difficult
to investigate in conventional means. Figure 6.4 illustrates one such example
that can be studied by MVID Modeling. In this simple example, by the way,
the strong and weak maximal full-invariant sets are the same, so there is no
need to consider both (5.30) and (5.31). Only the latter inequality was used to
generate Figure 6.4.
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FIGURE 6.3
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Figure 6.5 illustrates the dynamics and the maximal full invariant sets of
a similar DCDS. In this example, the author placed 7 competing attractors
symmetrically, and let the second disturbance be the random competing at-
tractions.

In reality, of course, one cannot expect such a symmetry. The reason that
the author considered an example with such stringent symmetry condition is in
part aesthetic beauty, but more importantly, easy recognition. Compare Figure
6.5 and Figure 6.6. One can easily recognize that they both depict the same
set, the maximal full-invariant set to be precise. Figure 6.5 was generated by
the author’s crude Mathematica program, and it took about 2.41001 seconds
of CPU time of his personal computer, including Mathematica’s initialization
time. Figure 6.6, on the other hand, was generated by a forward orbit of the
original DCDS. Even though the first disturbance was disregarded in order to
reduce the run-time, the same computer took about 35.7192 seconds of CPU
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time to complete Figure 6.6. See [11] and [13] for more detail behind Figure
6.4 and Figure 6.5, respectively.

At least in some cases, the MVID modeling and the resulting set-dynamics
appear to be useful tools, not only in pure mathematics but also in compu-
tational point of view as well. In general, however, the development of the
computational algorithm for MVID models of DCDS is still in its primitive
stage. At this moment, I do not know whether the successful improvement of
the finite-step approximate control problem for the elementary example that we
just discussed in this section can be duplicated or not for more realistic prob-
lems. Nonetheless, I believe this is a worthy topic that deserves our attention
for the future research.
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