• Title/Summary/Keyword: Dynamic-ID Scheme

Search Result 39, Processing Time 0.028 seconds

The Conversion method from ID-based Encryption to ID-based Dynamic Threshold Encryption (ID기반 암호시스템을 이용하여 ID기반 동적 임계 암호시스템으로 변환하는 방법)

  • Kim, Mi-Lyoung;Kim, Hyo-Seung;Son, Young-Dong;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.733-744
    • /
    • 2012
  • Dynamic threshold public-key encryption provides dynamic setting of the group of all users, receivers and the threshold value. Over recent years, there are many studies on the construction of scheme, called ID-based dynamic threshold encryption, which combines the ID-based encryption with dynamic threshold encryption. In this paper, we analyze the ID-based dynamic threshold encryption proposed by Xing and Xu in 2011, and show that their scheme has a structural problem. We propose a conversion method from ID-based encryption which uses the bilinear map to ID-based dynamic threshold encryption. Additionally, we prove this converted scheme has CPA security under the full model.

Improved Dynamic ID-based Remote User Authentication Scheme Using Smartcards (스마트카드를 이용한 향상된 동적 ID기반 원격 사용자 인증 기술)

  • Shim, Hee-Won;Park, Joonn-Hyung;Noh, Bong-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.223-230
    • /
    • 2009
  • Among the remote user authentication schemes, password-based authentication methods are the most widely used. In 2004, Das et al. proposed a "Dynamic ID Based Remote User Authentication Scheme" that is the password based scheme with smart-cards, and is the light-weight technique using only one-way hash algorithm and XOR calculation. This scheme adopts a dynamic ID that protects against ID-theft attack, and can resist replay attack with timestamp features. Later, many flaws of this scheme were founded that it allows any passwords to be authenticated, and can be vulnerable to impersonation attack, and guessing attack. By this reason many modifications were announced. These scheme including all modifications are similarly maintained security against replay the authentication message attack by the timestamp. But, if advisory can replay the login immediately, this attempt can be succeeded. In this paper, we analyze the security vulnerabilities of Das scheme, and propose improved scheme which can resist on real-time replay attack using the counter of authentication. Besides our scheme still secure against impersonation attack, guessing attack, and also provides mutual authentication feature.

  • PDF

Forward Anonymity-Preserving Secure Remote Authentication Scheme

  • Lee, Hanwook;Nam, Junghyun;Kim, Moonseong;Won, Dongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1289-1310
    • /
    • 2016
  • Dynamic ID-based authentication solves the ID-theft problem by changing the ID in each session instead of using a fixed ID while performing authenticated key exchanges between communicating parties. User anonymity is expected to be maintained and the exchanged key kept secret even if one of the long-term keys is compromised in the future. However, in the conventional dynamic ID-based authentication scheme, if the server's long-term key is compromised, user anonymity can be broken or the identities of the users can be traced. In addition, these schemes are vulnerable to replay attacks, in which any adversary who captures the authentication message can retransmit it, and eventually cause the legitimate user to be denied service. This paper proposes a novel dynamic ID-based authentication scheme that preserves forward anonymity as well as forward secrecy and obviates replay attacks.

Analysis and Improvement of Andola et al.'s Dynamic ID based User Authentication Scheme

  • Mi-Og Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.67-75
    • /
    • 2023
  • In this paper, we analyze the problem of the user authentication scheme that provides dynamic ID in a multi-server environment proposed by Andola et al. and propose an improved authentication one to solve this problem. As a result of analyzing the authentication scheme of Andrea et al. in this paper, it is not safe for smart card loss attack, and this attack allows users to guess passwords, and eventually, the attacker was able to generate session key. This paper proposed an improved authentication scheme to solve these problems, and as a result of safety analysis, it was safe from various attacks such as smart card loss attack, password guess attack, and user impersonation attack. Also the improved authentication scheme not only provides a secure dynamic ID, but is also effective in terms of the computational complexity of the hash function. In addition, the improved authentication scheme does not significantly increase the amount of transmission, so it can be said to be an efficient authentication scheme in terms of transmission cost.

Lightweight RFID Authentication Protocols Based on Hash Function (해쉬함수에 기반한 경량화된 RFID 인증 프로토콜)

  • Ha, Jae-Cheol;Baek, Yi-Roo;Kim, Hwan-Koo;Park, Jea-Hoon;Moon, Sang-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.61-72
    • /
    • 2009
  • To guarantee security between the tag and back-end server and implementation efficiency in low power tag, we propose two typed mutual authentication protocols in RFID system. One is static-ID authentication scheme which is well suitable in distributed server environments. The other is dynamic-ID scheme which is additively satisfied forward security. In proposed scheme, it does not need any random number generator in tag and requires only one(maximally three) hash operation(s) in tag or server to authenticate each other. Furthermore, we implement the proposed schemes in RFID smart card system and verify its normal operations.

Dynamic ID randomization for user privacy in mobile network

  • Arijet Sarker;SangHyun Byun;Manohar Raavi;Jinoh Kim;Jonghyun Kim;Sang-Yoon Chang
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.903-914
    • /
    • 2022
  • Mobile and telecommunication networking uses temporary and random identifiers (IDs) to protect user privacy. For greater intelligence and security o the communications between the core network and the mobile user, we design and build a dynamic randomization scheme for the temporary IDs for mobile networking, including 5G and 6G. Our work for ID randomization (ID-RZ) advances the existing state-of-the-art ID re-allocation approach in 5G in the following ways. First, ID-RZ for ID updates is based on computing, as opposed to incurring networking for the re-allocation-based updates, and is designed for lightweight and low-latency mobile systems. Second, ID-RZ changes IDs proactively (as opposed to updating based on explicit networking event triggers) and provides stronger security (by increasing the randomness and frequency of ID updates). We build on the standard cryptographic primitives for security (e.g., hash) and implement our dynamic randomization scheme in the 5G networking protocol to validate its design purposes, which include time efficiency (two to four orders of magnitude quicker than the re-allocation approach) and appropriateness for mobile applications.

ID-Based Group Key Management Protocols for Dynamic Peer Groups (피어 그룹을 위한 ID 기반의 그룹키 관리 프로토콜)

  • Park, Young-Ho;Lee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.922-933
    • /
    • 2004
  • In recent years, peer-to-peer network have a greate deal of attention for distributed computing or collaborative application, and work of ID-based public key systems have been focusing on the area of cryptography. In this paper, we propose ID-based group key management protocols for secure communication in autonomous peer group. Each member obtains his public/private key pair derived from his identification string from Private Key Generator. No central server participates in group key management protocol instead, all group members share the burden of group key management by the collaboration of themselves, so that our scheme avoids the single point of failure problem. In addition, our scheme considers the nature of dynamic peer group such as frequent joining and leaving of a member.

  • PDF

Design Errors and Cryptanalysis of Shin's Robust Authentication Scheme based Dynamic ID for TMIS

  • Park, Mi-Og
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.101-108
    • /
    • 2021
  • In this paper, we analyze Shin's proposed dynamic ID-based user authentication scheme for TMIS(Telecare Medicine Information System), and Shin's authentication scheme is vulnerable to smart card loss attacks, allowing attackers to acquire user IDs, which enables user impersonation attack. In 2019, Shin's proposed authentication scheme attempted to generate a strong random number using ECC, claiming that it is safe to lose a smart card because it is impossible to calculate random number r'i due to the difficulty of the ECC algorithm without knowing random number ri. However, after analyzing Shin's authentication scheme in this paper, the use of transmission messages and smart cards makes it easy to calculate random numbers r'i, which also enables attackers to generate session keys. In addition, Shin's authentication scheme were analyzed to have significantly greater overhead than other authentication scheme, including vulnerabilities to safety analysis, the lack of a way to pass the server's ID to users, and the lack of biometric characteristics with slightly different templates.

Security Analysis of a Secure Dynamic ID based Remote User Authentication Scheme for Multi-server Environment (멀티서버를 위한 안전한 동적 ID 기반 원격 사용자 인증 방식에 대한 안전성 분석)

  • Yang, Hyung-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.273-278
    • /
    • 2013
  • Recently, user authentication schemes using smart cards for multi-server environment have been proposed for practical applications. In 2009, Liao-Wang proposed a secure dynamic ID based remote user authentication scheme for multi-server environment that can withstand the various possible attacks and provide user anonymity. In this paper, we analyze the security of Liao-Wang's scheme, and we show that Liao-Wang's scheme is still insecure against the forgery attack, the password guessing attack, the session key attack, and the insider attack. In addition, Liao-Wang's scheme does not provide user anonymity between the user and the server.

Secure Private Key Revocation Scheme in Anonymous Cluster -Based MANETs

  • Park, YoHan;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.499-505
    • /
    • 2015
  • Security supports are a significant factor in the design of mobile ad hoc networks. In the dynamic topology where the node changes frequently, private key generation and revocation for newly joining and leaving nodes must be considered. In addition, the identities of individual nodes must be protected as well in mobile networks to avoid personal privacy concerns. This paper proposes ID-based private key revocation scheme and non-interactive key agreement scheme in anonymous MANETs. The proposed scheme provides the user privacy using pseudonyms and private key generation and revocation schemes with consideration of dynamic user changes. Therefore, our schemes can be applied in dynamic and privacy-preserving MANETs which are helpful to share multimedia data.