• Title/Summary/Keyword: Dynamic stabilization

Search Result 304, Processing Time 0.028 seconds

Changes of bite force and dynamic functional occlusion analysis after occlusal stabilization splint therapy in sleep bruxism patients: a pilot study (수면이갈이 환자에서 교합안정장치 사용 후 교합력 및 동기능적교합분석: 예비 연구)

  • Jaeyeon, Kim;Yiseul, Choi;Yool Bin, Song;Wonse, Park;Seong Taek, Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.204-212
    • /
    • 2022
  • Purpose: The aim of this study was to compare changes of bite force, occlusal contact area, and dynamic functional occlusion analysis after occlusal stabilization splint therapy during sleep for one month in a patient with bruxism. Materials and Methods: From October 2021 to July 2022, sleep bruxism of 30 patients who visited the Department of Oral Medicine at Yonsei University College of Dentistry Hospital were recruited. The participants were divided into two groups: using an occlusal stabilization splint during sleep (treatment; n = 15) and not using an occlusal stabilization splint (control; n = 15). Before using the occlusal stabilization splint and one month after, bite force, occlusal contact area and dynamic functional occlusion analysis (ratio of left/right bite forces, average bite forces, maximum bite forces, and maximum contact areas during lateral and anterior and posterior mandibular movements) were performed. Results: There was no difference in bite force and occlusal contact area between the treatment group using the occlusal stabilization splint and the control group not using the occlusal stabilization splint during sleep for one month. However, there were significant differences in the average bite force and maximum bite force in the lateral and anterior and posterior mandibular movements and the maximum contact areas in the anterior and posterior mandibular movements. Conclusion: The occlusal stabilization splint is helpful for sleep bruxism patients who lateral and anterior and posterior mandibular movements. In addition, further studies are needed a double-blind study with a large population.

Radicular Pain due to Subsidence of the Nitinol Shape Memory Loop for Stabilization after Lumbar Decompressive Laminectomy

  • Son, Byung-Chul;Kim, Deog-Ryeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.61-64
    • /
    • 2015
  • A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression.

Gunner primary sight stabilization system design and performance analysis (조준경 안정화 시스템의 설계 및 특성분석)

  • 김용관;백운보;김종화;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.327-332
    • /
    • 1990
  • Gunner primary sight stabilization system is a fully integrated sensor package designed to provide the stabilized Line-of-Sight. In this study, to improve disturbance rejection capabilities, two types of compensator (LQG/LTR, Lead-Lag) were designed and then stabilization performances were compared under severe off-road environment. Simulation results shows that the stabilization performances using LQG/LTR methodology is better than Lead-Lag methodology in spite of dynamic uncertainties.

  • PDF

The Effect of Lumbar Stabilization Exercise with Proprioceptive Neuromuscular Facilitation Technique to Balance and Gait in Chronic Stroke Patients (고유수용성 신경근 촉진법을 적용한 요부 안정화 운동이 만성 뇌졸중 환자의 균형과 보행에 미치는 영향)

  • Park, Jae-Myung;Shin, Young-Il;Yang, Seong-Hwa
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Background: The purpose of this study is on finding the effects of the lumbar stabilization exercise applied with the proprioceptive neuromuscular facilitation technique (PNF) to the balance and the gait of chronic stroke patients. Methods: An experiment was conducted using two sets of behavioral measures with 30 chronic stroke hospitalized patients in the rehabilitation center located in Incheon city. The 15 participants in group A were instructed to apply the traditional exercise therapy. And the other 15 participants were assigned to apply the lumbar stabilization exercise with the PNF technique. It was conducted for 30 minutes per three days for six weeks, which had eighteen times. Using the balance system, it was checked about the static and dynamic balance. Using the Gaitrite, it was checked about the ability of the gait. Results: There was a better effect on both groups especially with the static balance. Those who were applied the lumbar stabilization exercise with the PNF technique had a better result on the dynamic balance and the gait than those applied the traditional exercise therapy. Conclusion: This research shows that the Lumbar Stabilization Exercise applied with the PNF technique is more effective on dynamic balance and the gait performance ability of the chronic stroke patients.

  • PDF

Influence of Trunk Stabilization Exercise upon the Lumbar Stabilization and Foot Pressure in Patients with Back Pain (체간 안정화 운동이 요통환자의 요부안정성과 족저압에 미치는 영향)

  • Lee, Woo-Jin;Park, Seol;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Purpose: This study examined the effect of trunk stabilization exercise upon the lumbar stabilization and foot pressure on an unstable surface with back pain. Methods: The subjects of the study were 10 patients who showed the symptom of back pain with excessive lumbar curve. This study was 4 weeks, 30 minutes per session, three times a week for a total of 12 times as a result of exercise radiation imaging device and foot pressure analyzer. Results: The sacrohorizontal angle was statistically significant(p<0.05). Comparison of the difference between static right and left foot pressure ratio analysis was statistically significant(p<0.05). Dynamic right and left foot pressure comparisons for the difference was statistically significant in the analysis (p<0.05). Conclusion: Trunk stabilization exercise and the reduction of the excessive sacrohorizontal angle, and static and dynamic foot pressure imbalance reduced left and right.

Precision Stabilization Control of Servo-system by Using Friction Compensation (마찰보상을 통한 서어보제어계의 정밀 안정화 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.109-115
    • /
    • 1999
  • This paper presents a stabilization control designed to improve position stabilization performance of a position servo-system(turret) mounted on a manuvering platform(vehicle). In the consideration of the motion of the platform, a dynamic model of the stabilization system is derived and shows the viscous and stick-slip friction torques are the major source of stabilization errors. An extended generalized minimum variance control which consists of a feedforward disturbance compensation as well as a pole placement feedback control is suggested to reduce the stabilization errors caused from the friction disturbances. This modeling and control are applied to a small experimental set-up and the experimental results confirm the accuracy of the model and the effectiveness of the suggested control.

  • PDF

Robust stabilization of nonlinear uncertain systems without matching conditions (정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF

Effect of Ankle Stabilization Exercise with Kinesio Taping on Static·Dynamic Balance (키네시오 테이핑을 적용한 발목 안정화운동이 정적·동적 균형에 미치는 효과)

  • Su-Jin Hong;Na-Young Kim;Sun-Ha Kim;Sung-Yeon Park;Yeon-jung Lee;Ye-Won Jeon;Seung-Yeon Jung;Jin-Young Jeong;Hyeon-Jeong Jo;Jeong-Ja Kim
    • Journal of Korean Clinical Health Science
    • /
    • v.11 no.1
    • /
    • pp.1644-1653
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effect of kinesio taping application on static and dynamic balance during ankle stabilization exercise. Method: H University in Gunsan is recruiting subjects with unstable ankles (N=12). The 12 subjects were randomly divided into groups (n=6) that performed ankle stabilization exercises by applying kinesio taping and groups that performed ankle stabilization exercises only (N=6). Exercise was done twice a week for 4 weeks. All groups conducted the same exercise program, including stretching, for 40 minutes. The exercise program was conducted in the following order. It was conducted in the order of 5 minutes of stretching, 30 minutes of exercise program, and 5 minutes of finishing stretching. To measure the change in static and dynamic balance, the experimenter and control group measured the change by conducting the Cumberland ankle instability tool, the Y-balance test, and the Stork balance standing test (SBST). Results: There was a statistically significant difference in static and dynamic balance between the group with kinesio taping (experimental group) and the group without kinesio taping (control group) in patients with chronic ankle instability. However, there was no statistically significant difference in static and dynamic balance before and after intervention between groups. Conclusion: These results were expected to help improve dynamic and static balance in ankle instability when applying kinesio taping and balance exercises, but there was no significant difference between the experimental group and the control group because the experiment period was short.

Clinical Experience of the Dynamic Stabilization System for the Degenerative Spine Disease

  • Lee, Soo-Eon;Park, Sung-Bae;Jahng, Tae-Ahn;Chung, Chun-Kee;Kim, Hyun-Jib
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.5
    • /
    • pp.221-226
    • /
    • 2008
  • Objective : The aim of the present study was to assess the safety and efficacy of the dynamic stabilization system in the treatment of degenerative spinal diseases. Methods : The study population included 20 consecutive patients (13 females, 7 males) with a mean age of $61{\pm}6.98$ years (range 46-70) who underwent decompression and dynamic stabilization with the Dynesys system between January 2005 and August 2006. The diagnoses included spinal stenosis with degenerative spondylolisthesis (9/20, 45%), degenerative spinal stenosis (5/20, 25%), adjacent segmental disease after fusion (3/20, 15%), spinal stenosis with degenerative scoliosis (2/20, 10%) and recurrent intervertebral lumbar disc herniation (1/20, 5%). All of the patients completed the visual analogue scale (VAS) and the Korean version of the Oswestry Disability Index (ODI). The following radiologic parameters were measured in all patients : global lordotic angles and segmental lordotic angles (stabilized segments, above and below adjacent segments). The range of motion (ROM) was then calculated. Results : The mean follow-up period was $27.25{\pm}5.16$ months (range 16-35 months), and 19 patients (95%) were available for follow-up. One patient had to have the implant removed. There were 30 stabilized segments in 19 patients. Monosegmental stabilization was performed in 9 patients (47.3%), 9 patients (47.3%) underwent two segmental stabilizations and one patient (5.3%) underwent three segmental stabilizations. The most frequently treated segment was L4-5 (15/30, 50%), followed by L3-4 (12/30, 40%) and L5-S1 (3/30, 10%). The VAS decreased from $8.55{\pm}1.21$ to $2.20{\pm}1.70$ (p<0.001), and the patients' mean score on the Korean version of the ODI improved from $79.58%{\pm}15.93%$ to $22.17%{\pm}17.24%$ (p<0.001). No statistically significant changes were seen on the ROM at the stabilized segments (p=0.502) and adjacent segments (above segments, p=0.453, below segments, p=0.062). There were no patients with implant failure. Conclusion : The results of this study show that the Dynesys system could preserve the motion of stabilized segments and provide clinical improvement in patients with degenerative spinal stenosis with instability. Thus, dynamic stabilization systems with adequate decompression may be an alternative surgical option to conventional fusion in selected patients.

Stabilization System for Mobile Antenna Gimbal based on Dynamic Characteristics Analysis (동특성 해석에 기반한 이동용 안테나 김발 안정화 시스템)

  • Lee, Ki-Nam;Lee, Byoung-Ho;Lee, Jeung;Kim, Jie-Eok;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.851-856
    • /
    • 2013
  • Recently, as the tactical environment has changedto one of network-centric warfare, where all components are connected through a network, much emphasis has been placed on the use of an artificial satellite for achieving high communication speeds. To provide a high-quality artificial satellite link, stabilization is very important in a platform. Previous stabilization control techniques used PI control, which is commonly used for vessels. However, for ground terminals that require a higher communication speed, the antenna should move faster to track an artificial satellite within a short period of time. Moreover, the terminals must be equipped with proper sensors and algorithms so that they can detect and compensate for external disturbances while tracking the artificial satellite. In this study, through the analysis of the dynamic model of an antenna system, a stabilization algorithm for ground terminals was proposed;this algorithm shows high isolation performance in the low-frequency range and includes $PI^2$ control.