• Title/Summary/Keyword: Dynamic incremental factor

Search Result 37, Processing Time 0.024 seconds

A Study on the Dynamic Interaction Analysis of Curved Bridge-AGT Vehicle (곡선교량-AGT 차량의 상호작용에 의한 동적 거동에 관한 연구)

  • Lee An-Ho;Kim Ki-Bong;Kim Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.376-381
    • /
    • 2003
  • This study is focused on the dynamic response of curved bridge when the rubber tired AGT vehicles is running with alternative articulations. For the analytic approach, there is necessary for the three dimensional vehicle model with 11 degree of freedom and the three dimensional curved bridge model by means of finite element method. It can be described by conventional Lagrangian formula with respect to the dynamic interactions between vehicles and its met bridge. The formula is implemented by Fortran language on the simulation program designated BADIA II(Bridge-AGT Dynamic Interaction Analysis II). The solutions of the formula are derived by Newmark- ${\beta}$ method. The BADIA II is for the dynamic interactions between vehicle and curved bridge in terms of the roughness of running surface and guide rail. The applicability of the BADIA II is verified in terms of displacement and modal frequency. This study is described that the dynamic interactive behaviors between the rubber tired AGT vehicle and curved bridge in terms of the radius of curvatures of curved bridge, vehicle articulations, vehicle speeds, vehicle weights, flatness of running surface and roughness of guide rail using BADIA II.

  • PDF

Evaluation of seismic reliability and multi level response reduction factor (R factor) for eccentric braced frames with vertical links

  • Mohsenian, Vahid;Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.537-549
    • /
    • 2018
  • Using vertical links in eccentric braced frames is one of the best passive structural control approaches due to its effectiveness and practicality advantages. However, in spite of the subject importance there are limited studies which evaluate the seismic reliability and response reduction factor (R-factor) in this system. Therefore, the present study has been conducted to improve the current understanding about failure mechanism in the structural systems equipped with vertical links. For this purpose, following definition of demand and capacity response reduction factors, these parameters are computed for three different buildings (4, 8 and 12 stories) equipped with this system. In this regards, pushover and incremental dynamic analysis have been employed, and seismic reliability as well as multi-level response reduction factor according to the seismic demand and capacity of the frames have been derived. Based on the results, this system demonstrates high ductility and seismic energy dissipation capacity, and using the response reduction factor as high as 8 also provides acceptable reliability for the frame in the moderate and high earthquake intensities. This system can be used in original buildings as lateral load resisting system in addition to seismic rehabilitation of the existing buildings.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Response modification and seismic design factors of RCS moment frames based on the FEMA P695 methodology

  • Mohammad H. Habashizadeh;Nima Talebian;Dane Miller;Martin Skitmore;Hassan Karampour
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.47-64
    • /
    • 2023
  • Due to their efficient use of materials, hybrid reinforced concrete-steel (RCS) systems provide more practical and economic advantages than traditional steel and concrete moment frames. This study evaluated the seismic design factors and response modification factor 'R' of RCS composite moment frames composed of reinforced concrete (RC) columns and steel (S) beams. The current International Building Code (IBC) and ASCE/SEI 7-05 classify RCS systems as special moment frames and provide an R factor of 8 for these systems. In this study, seismic design parameters were initially quantified for this structural system using an R factor of 8 based on the global methodology provided in FEMA P695. For analyses, multi-story (3, 5, 10, and 15) and multi-span (3 and 5) archetypes were used to conduct nonlinear static pushover analysis and incremental dynamic analysis (IDA) under near-field and far-field ground motions. The analyses were performed using the OpenSees software. The procedure was reiterated with a larger R factor of 9. Results of the performance evaluation of the investigated archetypes demonstrated that an R factor of 9 achieved the safety margin against collapse outlined by FEMA P695 and can be used for the design of RCS systems.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.

Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads (이동하중의 편측재하에 따른 단순교의 충격계수 및 응답계수 변화 분석)

  • Hong, Sanghyun;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.105-113
    • /
    • 2018
  • The proposed model to predict the bridge load carrying capacity uses the impact response spectrum. The spectrum is based on Euler-Bernoulli beam and the center of the bridge width for the moving load location. Therefore, it is necessary to investigate the eccentric moving load effects on the impact factor and response factor. For this, this study considers 10 m width and two-lane simply supported slab bridges and performs the moving load analysis to investigate the variations of peak impact factor and corresponding response factor. The numerical results show that the eccentric load increases both the static and dynamic displacements, but the impact factor is decreased since the incremental amount of static displacement is bigger than that of dynamic displacement. However, the difference of the impact factors between the center and eccentric loadings is small showing less than 0.5%p. In the response factor, the eccentric loading increases both the static and dynamic response factors, compared to the center loading. The difference of the response factor is only 0.18%p. It shows that the eccentric loading has very small effects on the response factor, thus the impact factor response spectrum which is generated based on the center moving load can be used to determine the response factor.

Proposition of Response Modification Factor of Low-rise Steel Intermediate Moment Frame in Korea using FEMA P695 (FEMA P695를 이용한 국내 저층 철골 중간모멘트골조의 반응수정계수 제안)

  • Han, A Rum;Kim, Taewan;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In current seismic design code, steel moment frames are classified into ordinary, intermediate, and special moment frames. In the case of special moment frames which have large R-factor, economic design is possible by reducing the design lateral force. However, there is difficulty for practical application due to constraints such as strong column-weak beam requirement. This study evaluated if steel intermediate moment frame could maintain enough seismic capacity when the R-factor is increased from 4.5 to 6. As for the analytical models, steel moment frames of 3 and 5 stories were categorized into four performance groups according to seismic design category. Seismic performances of the frames were evaluated through the procedure based on FEMA P695. FEMA P695 utilizes nonlinear static analysis(pushover analysis) and nonlinear dynamic analysis(incremental dynamic analysis, IDA). In order to reflect the characteristics of Korean steel moment frames on the analytical model, the beam-column connection was modeled as weak panel zone where the collapse of panel zone was indirectly considered by checking its ultimate rotational angle after an analysis is done. The analysis result showed that the performance criteria required by FEMA P695 was satisfied when R-factor increased in all the soil conditions except $S_E$.

Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings (충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발)

  • K.S. Kim;J.B. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • This paper describes a dynamic fracture behaviors of structural elements under elastic or elasto-plastic stress waves in two dimensional space. The governing equation of this problem has the type of hyperbolic partial differential equation, which consists of the equation of motions and incremental elasto-plastic constitutive equations. To solve this problem we introduce Zwas' method which is based on the finite difference method. Additionally, in order to deal with the dynamic behavior of elasto-plastic problems, an elasto-plastic loading path in the stress space is proposed to model the plastic yield phenomenon. Based on the result of this computation, the dynamic stress intensity factor at the crack tip of an elastic material is calculated, and the time history of a plastic zone of a elasto-plastic material is to be shown.

  • PDF

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.