• Title/Summary/Keyword: Dynamic effects

Search Result 4,408, Processing Time 0.197 seconds

Effects of Flange Joint on the Dynamic Characteristics of the External Cylindrical Grinding Wheel Spindle (외경연삭 휠 주축의 진동특성에 미치는 플랜지 결합부의 영향)

  • Kim, Sun-Min;Ha, Jae-Hoon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.118-125
    • /
    • 1999
  • In the grinding process, generally, the exciting forces with high frequency can be generated due to the wheel wear and the grinding process. As the grinding speed increases, the precise investigation about the wheel dynamic characteristics is required. Conventionally the wheel-spindle has been considered with lumped model in dynamic modeling. With this lumped model, the significant mode resulted from the shell mode of wheel can be readily ignored. This paper suggests the new analysis model which includes the shell mode of wheel in modeling the wheel-spindle assembly. Furthermore, based on the suggested model, the effects of the bolt tightening force and the taper tightening force on the dynamic properties are investigated by the finite element modal analysis and the experimental method. As a result of investigation, the shell mode vibration of wheel affects the dynamic characteristics of the spindle assembly. Also, the vibration modes of the spindle assembly are significantly affected by the joint tightening forces.

  • PDF

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.

The Dynamics Responses of Railway Bridges Considering the Track Model (궤도모형에 따른 철도교량의 동적응답분석)

  • Kim, Sang-Hyo;Lee, Yong-Seon;Jung, Jun;Lee, Jun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF

The Effects of a Gluteus Maximus Strengthening Exercise on the Spinal Alignment and Dynamic Balance of Kyphosis Subjects (큰볼기근 근력강화운동이 척추뒤굽음자세를 가진 대상자의 척추정렬 및 동적균형에 미치는 영향)

  • Park, Kanghui;Park, Geuntae;Park, Sookyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • Purpose: This study was performed to determine the effects of a gluteus maximus strengthening exercise on both spinal alignment and dynamic balance in subjects with kyphosis. Methods: We measured the kyphosis angle of 150 subjects and selected those whose kyphosis angle was > $50^{\circ}$. The participants included 10 male and 12 female college students. After a gluteus maximus strengthening exercise was applied, the subjects were measured by the formetric 4D and Biorescue systems. The collected data were analyzed by a paired t-test with the SPSS (Ver. 21) program for spinal alignment and dynamic balance comparisons both before and after the gluteus maximus strengthening exercise was completed. Results: The results regarding spinal alignment showed statistically significant decreases in pelvic tilt, kyphotic angle, and lordotic angle after the intervention (p < .05). However, trunk imbalance, pelvic torsion, surface rotation, and lateral deviation were not significantly different after the exercise. The results of the dynamic balance showed statistically significant increases in limits of stability after the exercise (p < .05). Conclusion: The above results suggest that the implemented gluteus maximus strengthening exercise may be effective for spinal alignment and dynamic balance in subjects with kyphosis.

A Comparative Evaluation of Closed and Open Kinetic Exercises in the Management of Chronic Ankle Instability

  • Jung, Namjin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2212-2220
    • /
    • 2020
  • Background: Repetitive damage to the ankle joint causes chronic ankle instability, and studies comparing the effects of exercise in open and closed chains as a treatment method are very rare. Objectives: To investigate the effects of open and closed kinetic exercises on muscle activity and dynamic balance of ankle joint in adults with chronic ankle instability. Design: Single-blind randomized controlled trial. Methods: The selected 30 subjects are randomly divided into open kinetic chain exercise experimental group (EGI, n=10), closed kinetic chain exercise experimental group (EGII, n=10), and stretching control group (CG, n=10). Open and closed kinetic exercises lasted 30 minutes three times a week for six weeks and stretching exercises performed four actions for 20 seconds and five sets. The measurement tools using surface electromyography to measure muscle activity in the ankle joint. The dynamic balance of the ankle was evaluated using the Y-Balance test. Results: Following the intervention, closed and open kinetic chain exercise group showed significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance (P<.05). However, no significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance between closed and open kinetic chain exercise group (P<.05). Conclusion: This study provides evidence that closed and open kinetic chain exercise can be presented as an effective exercise for the muscle activity of ankle muscle and dynamic balance of the subject with chronic ankle instability.

Effects of EMG-Biofeedback based Closed Kinetic Chain Exercise on Quadriceps Muscle Activity and Dynamic Balance in Patellofemoral Pain Syndrome (근전도 생체되먹임 기반 닫힌사슬운동이 무릎넙다리통증증후군의 넙다리네갈래근 근활성도와 동적 균형에 미치는 영향)

  • Kang, Joo-hyun;Kim, Je-ho
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.89-98
    • /
    • 2021
  • Purpose: The purpose of this study was to determine the effects of electromyography (EMG)-biofeedback based closed kinetic chain exercise (CKCE) on quadriceps muscle activity and dynamic balance ability in patellofemoral pain syndrome (PFPS). Methods: Thirty subjects with PFPS were included and they were divided into EMG-biofeedback using CKCE (Group I) and squat exercise using CKCE (Group II), each group consisted of 15 patients. Group I and Group II was performed by the patients for three times a week, for six weeks. sEMG was used to measure quadriceps muscle activity and star excursion balance test (SEBT) was used to measure dynamic balance ability. Results: According to the results of the comparisons between the groups, after intervention, quadriceps muscle activity and dynamic balance ability were significantly higher in Group I than in the Group II. Conclusion: Findings of this study suggest that EMG-biofeedback using CKCE that provides real-time biofeedback information on muscle contraction may have a beneficial effect on selective muscle strength of vastus medialis oblique muscle and dynamic balance ability in PFPS.

DYNAMIC CHARACTERISTICS OF A ROTATING TIMOSHENKO BEAM SUBJECTED TO A VARIABLE MAGNITUDE LOAD TRAVELLING AT VARYING SPEED

  • OMOLOFE, BABATOPE;OGUNYEBI, SEGUN NATHANIEL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.17-35
    • /
    • 2016
  • In this study, the dynamic behaviour of a rotating Timoshenko beam when under the actions of a variable magnitude load moving at non-uniform speed is carried out. The effect of cross-sectional dimension and damping on the flexural motions of the elastic beam was neglected. The coupled second order partial differential equations incorporating the effects of rotary and gyroscopic moment describing the motions of the beam was scrutinized in order to obtain the expression for the dynamic deflection and rotation of the vibrating system using an elegant technique called Galerkin's Method. Analyses of the solutions obtained were carried out and various results were displayed in plotted curve. It was found that the response amplitude of the simply supported beam increases with an increase in the value of the foundation reaction modulus. Effects of other vital structural parameters were also established.

The Effects of Dynamic Viscosity and Load od Hydraulic Oil on Pressures (유압유의 동점도와 부하변화에 따른 압력의 영향)

  • 박주석;김일수;손준식;안영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.573-576
    • /
    • 1995
  • The realization by many industrial countries that manufacturing is a critical ingredient for attaining economic strength and stability has led to the development of automated systems which were proviously considered as gimmicks. The adaptive skill of the human operator is now being simulated and reproduced by computer that have become more powerful and less expensive. The work presented in this paper forms an investigation of the effects of dynamic viscosity and load of hydraulic oil an pressures with three different circuit(meter-in, meter-out and bleed off). The experimental results showed that pressures increase with an increase in dynamic viscosity and load in bleed off circuit, but there is no variation of pressure in meter-In meter-out circuit.

  • PDF

Dynamic Response of a Beam Structure with Discrete Supports Subjected to a Moving Mass (이동질량에 의한 이산지지 보 구조물의 동적응답)

  • Oh, B.J.;Ryu, B.J.;Lee, G.S.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • This paper deals with dynamic response of a beam structure with discrete spring-damper supports under a moving mass. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed of the moving mass, spring stiffness, damping coefficient, span number of a beam structure, mass ratio of the moving mass on the dynamic response of the beam structure have been studied. Some numerical results provide design engineers for the beam structure design with discrete supports under a moving mass.

An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation (차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증)

  • 배상우;윤중락;이장무;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF