Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.2.229

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping  

Farokhian, Ahmad (Mechanical Engineering group, Pardis College, Isfahan University of Technology)
Salmani-Tehrani, Mehdi (Mechanical Engineering group, Pardis College, Isfahan University of Technology)
Publication Information
Steel and Composite Structures / v.37, no.2, 2020 , pp. 229-251 More about this Journal
Abstract
In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.
Keywords
smart sandwich nanotube; dynamic buckling; viscoelastic; surface stresses; zigzag theory;
Citations & Related Records
Times Cited By KSCI : 40  (Citation Analysis)
연도 인용수 순위
1 Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.4347.   DOI
2 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
3 Tessler, A., Sciuva, M.D. and Gherlone, M. (2010), "A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics", J. Mech. Mat. Struct., 5, 341-367. DOI: 10.2140/jomms.2010.5.341.   DOI
4 Yoon, J., Ru, C.Q. and Mioduchowski, A. (2005), "Vibration and instability of carbon nanotubes conveying fluid", Compos. Sci. Tech., 65, 1326-1336. https://doi.org/10.1016/j.compscitech.2004.12.002.   DOI
5 Yoon, J. and Ru, C.Q. (2019), "Metamaterial-like vibration of doublewalled carbon nanotubes", Physica E, 107, 196-202. https://doi.org/10.1016/j.physe.2018.08.015.   DOI
6 Wang, L. and Ni, Q. (2008), "On vibration and instability of carbon nanotubes conveying fluid", Comput. Mater. Sci., 43, 399-402. https://doi.org/10.1016/j.compscitech.2004.12.002.   DOI
7 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.   DOI
8 Alibeigloo, A. and Madoliat, R. (2009), "Static analysis of crossply laminated plates with integrated surface piezoelectric layers using differential quadrature", Compos. Struct., 88, 342-353. https://doi.org/10.1016/j.compstruct.2008.04.018   DOI
9 Asghar, S., Nawaz Naeem, M. and Hussain, M. (2020), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E, 116, In press, https://doi.org/10.1016/j.physe.2019.113726.
10 Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7.   DOI
11 Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.   DOI
12 Zhang, Y., Liu, G. and Han, X. (2005), "Transverse vibrations of double-walled carbon nanotubes under compressive axial load", Phys. Lett. A, 340, 258-266. https://doi.org/10.1016/j.physleta.2005.03.064.   DOI
13 Wang, L. and Ni, Q. (2009), "A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid", Mech. Res. Commun., 36, 833-837. https://doi.org/10.1016/j.mechrescom.2009.05.003.   DOI
14 Wang, Ch.Y. and Adhikari, S. (2011a), "ZnO-CNT composite nanotubes as nanoresonators", Phys. Lett. A, 375, 2171-2175, https://doi.org/10.1016/j.physleta.2011.04.031.   DOI
15 Wang, C.Y., Li, L.J. and Chew, Z.J. (2011b), "Vibrating ZnO-CNT nanotubes as pressure/stress sensors", Physica E, 143, 1288-1293. DOI:10.1016/j.physe.2011.03.003.   DOI
16 Zhang, J., Wang, R. and Wang, C. (2012), "Piezoelectric ZnO-CNT nanotubes under axial strain and electrical voltage", Physica E, 46, 105-112. https://doi.org/10.1016/j.physe.2012.09.001.   DOI
17 Zaoui, F.Z., Ouinas, D. Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.   DOI
18 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI
19 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.   DOI
20 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.   DOI
21 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.   DOI
22 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
23 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
24 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi. A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166.   DOI
25 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. http://dx.doi.org/10.12989/sem.2019.71.2.185.   DOI
26 Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135.   DOI
27 Chang, W.J. and Lee, H.L. (2009), "Free vibration of a singlewalled carbon nanotube containing a fluid flow using the Timoshenko beam model", Phys. Lett. A, 373, 982-985. https://doi.org/10.1016/j.physleta.2009.01.011.   DOI
28 Cheraghbak, A., Botshekanan Dehkordi, M. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocomposite facesheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.   DOI
29 Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.   DOI
30 Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 32, 149-159. https://doi.org/10.12989/scs.2018.27.2.149.
31 Eringen, A.C. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
32 Fakhari, V., Ohadi, A. and Yousefian, P. (2010), "Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment", Compos. Struct., 93, 2310-2321. https://doi.org/10.1016/j.compstruct.2011.03.019.   DOI
33 Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296, 746-756. https://doi.org/10.1016/j.jsv.2006.02.024.   DOI
34 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-444. https://doi.org/10.1016/0020-7683(78)90008-2.   DOI
35 Karami, B., Janghorban, M.and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. http://dx.doi.org/10.12989/sem.2019.7.1.055.
36 Hosseini Hashemi, Sh., Es'haghi, M. and Karimi, M. (2010a), "Closed-form vibration analysis of thick annular functionally graded plates with integrated piezoelectric layers", Int. J. Mech. Sci., 52, 410-428. https://doi.org/10.1016/j.ijmecsci.2009.10.016.   DOI
37 Hosseini-Hashemi, Sh., Azimzadeh-Monfared, M. and RokniDamavandiTaher, H. (2010b), "A 3-D Ritz solution for free vibration of circular/annular functionally graded plates integrated with piezoelectric layers", Int. J. Eng. Sci., 48, 1971-1984. https://doi.org/10.1016/j.ijengsci.2010.06.004.   DOI
38 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. http://dx.doi.org/10.12989/cac.2020.25.1.037.   DOI
39 Khosravian, N. and Rafii-Tabar, H. (2008), "Computational Modelling of the Flow of Viscous", Nanotechnology, 19, 275703, https://doi.org/10.1088/0022-3727/40/22/027.   DOI
40 Kutlu, A., Gurlu, B.U˘, Omurtag, M.H. and Ergin, A. (2012), "Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid", Ocean Eng., 42, 112-125. https://doi.org/10.1016/j.oceaneng.2012.01.010.   DOI
41 Lakes, R. (2009), "Viscoelastic Materials", Cambridge University Press, USA.
42 Salehi-Khojin, A. and Jalili, N. (2008a), "Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings", Compos. Sci. Tech., 68, 1489-1501. https://doi.org/10.1016/j.compscitech.2007.10.024.   DOI
43 Li, Q., Chen, S.L. and Jiang, W.C. (2007), "Durability of nanoZnO antibacterial cotton fabric to sweat", J. Appl. Polym. Sci., 103, 412-416. https://doi.org/10.1002/app.24866.   DOI
44 Lin, W. and Qiao, N. (2008), "On vibration and instability of carbon nanotubes conveying flui", Comput. Mat. Sci., 43, 399-402. https://doi.org/10.1016/j.commatsci.2008.01.004.   DOI
45 Mahmoudi A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mat., 21(6), 1906-1926.   DOI
46 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Anis Bousahla, A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32, 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
47 Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach", J. Sound Vib., 331, 5069-5086. https://doi.org/10.1016/j.jsv.2012.06.005.   DOI
48 Salehi-Khojin, A. and Jalili, N. (2008b), "A comprehensive model for load transfer in nanotube reinforced piezoelectric polymeric composites subjected to electro-thermo-mechanical loadings", Compos. Part B: Eng., 39, 986-998. https://doi.org/10.1016/j.compositesb.2007.12.001.   DOI
49 Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.   DOI
50 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.486.   DOI
51 Semmah, A., Heireche, H., Bousahla, A.A.and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98, DOI: http://dx.doi.org/10.12989/anr.2019.7.2.089.
52 Patel, S.N., Datta, P.K. and Sheikh, A.H. (2006), "Buckling and dynamic instability analysis of stiffened shell panels", Thin-Wall. Struct., 44, 321-333, https://doi.org/10.1016/j.tws.2006.03.004,   DOI