• Title/Summary/Keyword: Dynamic coupling

Search Result 674, Processing Time 0.025 seconds

Nonlinear Dynamic Response of Well-Slab Apartment Building Considering The Behavior of Coupling Elements (벽식 아파트 구조에서 연결부재의 거동특성을 고려한 비선형 동적 응답)

  • 김기현;장극관;서대원;천영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.437-442
    • /
    • 2002
  • The purpose of this study is to investigate nonlinear behavior and estimate ultimate resistance of the wall structure against seismic loading. Experimental data for RC coupling elements are used for specifying the strength deterioration and stiffness degradation factor of hysteretic model. Modified coupling element models are used in the push over analysis and time history analysis. In the time history analysis, three earthquake waves are used in the analysis and their peak ground accelerations are changed to be 0.2g. The conclusions of this study are as follows : (1) In the push over analysis, yielding of coupling elements occurred at lower story with small story drift ratio as 0.3%. (2) In the time history analysis, the story drift ratio is sufficient for the requirement of Korean Code, But coupling elements at most stories of the buildings occurred yielding. i. e. the earthquake resistant capacity of shear wall structures is not sufficient at 0.2g.

  • PDF

Characteristics of floating couplings of ball screw for high precision feeding system (고정밀 이송을 위한 볼스크류용 체결기구의 특성에 관한 연구)

  • 김인찬;박천홍;정윤교;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.610-614
    • /
    • 1996
  • As the run out error and misalignment of ball screw connected directly to guide table largely affect the motion accuracy of guideway, floating coupling that releases the table from screw nut except feed and rotational direction is needed todecrease its influences. The purpose of this study is to propose a practical model floating coupling of ball serew for high precision feeding system. The straightness, dynanic characteristics and micro step response of hydrostatic guideway, mounted with three types of coupling fixed type, leaf spring type and hydrostatic type, are tested and compared. From the resuts of experiments, it is proved that a hydrostatic type floating coupling is superior to other couplings and is available to high precision feeding system with ball screw.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식;김창부
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

Three dimensional dynamic analysis of underground tunnels by coupling of boundary and finite elements (유한요소-경계요소 조합에 의한 터널의 3차원 동적해석)

  • 이찬우;김문겸;황학주
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.91-102
    • /
    • 1995
  • For the wave propagation problems, the influence of time-dependent dynamic behavior must be accounted in the analysis. In this study, the dynamic analysis method which combines finite elements and boundary elements is developed for the wave propagation problem modelling the infinity of medium through 3-D boundary elements and underground structure through degenerated finite shell elements. Performing dynamic analysis of underground tunnels by the proposed coupling method of boundary and finite elements, it is found that the change of the stiffness of structures has a good effect on the response. It is also found that the consideration of the repeating effect due to moving traffic loads which is difficult with existing 2-D dynamic analysis can be possible with the 3-D analysis in time domain.

  • PDF

Response Characteristics Of Steel Frame Structures With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • Bae, Chun-Hee;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.361.1-361
    • /
    • 2002
  • Coupling adjacent steel frame using elastic dampers fer control of response to low and moderate dynamic event is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristic, mainly modal damping ratio and modal frequency, of damper linked linear adjacent steel frame for fractical use. Dynamic response of steel frame linked by hydraulic-excitation method. (omitted)

  • PDF

System architecture and simulation strategy for dynamic process simulation (화학공정 동적모사기 개발에 있어서 시스템구조 및 전략)

  • 이강주;한경택;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.315-320
    • /
    • 1992
  • This paper presents the simulation architecture and strategy for dynamic simulation of chemical process and describes key features of developed dynamic simulation system, MOSA(Multi-Objective Simulation Architecture). A plant structure may be partioned into several strong coupling units, called cluster. If this cluster is solved simultaneously, it is possible to simulate whole plant without introducing convergence problem of tear streams. In this study, a flexible modular approach based on clusters was proposed as a promising architecture for dynamic chemical process simulator.

  • PDF

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Effect of Silane Coupling Agent on the Interfacial Adhesion and Mechanical Properties of Polyketone Fiber Reinforced Epoxy Composites (실란커플링제 처리가 폴리케톤섬유/에폭시 복합재료의 계면접착성 및 물성에 미치는 영향)

  • Jo, Hani;Yang, Jee-Woo;Lim, Hyeon Soo;Oh, Woo Jin;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • The interfacial adhesion between fiber and matrix affects the physical properties of fiber reinforced composites. In this study, 3-(Methacryloyloxy)propyltrimethoxy silane(MPS) coupling agent was used to increase the interfacial adhesion between polyketone fiber and epoxy resin. The change of surface chemical composition of polyketone fiber treated with MPS was analyzed using a FTIR-ATR. The interfacial bonding between fiber and resin increased with silane coupling agent largely. Consequently, interfacial shear strength(IFSS) was enhanced with increasing concentration of MPS coupling agent and thus, the physical properties of the composites such as flexural properties and dynamic mechanical properties were changed. Flexural strength and modulus increased when the MPS concentration was higher than 0.5wt%. The dynamic storage modulus of Polyketone/Epoxy composites treated with MPS was higher than that of the untreated one. When the MPS concentration of 3wt%, the highest storage modulus was obtained.

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.