• Title/Summary/Keyword: Dynamic coordinate system

Search Result 212, Processing Time 0.03 seconds

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

Trajectory Tracking Control of Mobile Robot using Multi-input T-S Fuzzy Feedback Linearization (다중 입력 T-S 퍼지 궤환 선형화 기법을 이용한 이동로봇의 궤도 추적 제어)

  • Hwang, Keun-Woo;Kim, Hyeon-Woo;Park, Seung-Kyu;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1447-1456
    • /
    • 2011
  • In this paper, we propose a T-S fuzzy feedback linearization method for controlling a non-linear system with multi-input, and the method is applied for trajectory tracking control of wheeled mobile robot. First, an error dynamic equation of wheeled mobile robot is represented by a T-S fuzzy model, and then the T-S fuzzy model is transformed to a linear control system through the nonlinear fuzzy coordinate change and the nonlinear state feedback input. Simulation results showed that the trajectory tracking controller by using the proposed multi-input feedback linearization method gives better performance than the trajectory tracking controller by using the PDC(Parallel Distributed Compensation) method for controlling the T-S Fuzzy system.

The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.;Aliyev, Soltan A.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.439-464
    • /
    • 2017
  • The hydro-elastic system consisting of a pre-stretched highly elastic plate, compressible Newtonian viscous fluid, and the rigid wall is considered and it is assumed that on the plate a lineal-located time-harmonic force acts. It is required to investigate the dynamic behavior of this system and determine how the problem parameters and especially the pre-straining of the plate acts on this behavior. The elasticity relations of the plate are described through the harmonic potential and linearized (with respect to perturbations caused by external time-harmonic force) form of these relations is used in the present investigation. The plane-strain state in the plate is considered and the motion of that is described within the scope of the three-dimensional linearized equations of elastic waves in elastic bodies with initial stresses. The motion of the fluid is described by the linearized Navier-Stokes equations and it is considered the plane-parallel flow of this fluid. The Fourier transform with respect to the space coordinate is applied for a solution to the corresponding boundary-value problem. Numerical results on the frequency response of the interface normal stress and normal velocity and the influence of the initial stretching of the plate on this response are presented and discussed. In particular, it is established that the initial stretching of the plate can decrease significantly the absolute values of the aforementioned quantities.

Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition (운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석)

  • Ryu, Ki-Wahn;Seo, Yun-Ho
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.163-169
    • /
    • 2018
  • In this study, wind loads exerted on the offshore wind turbine rotor in parked condition were predicted with variations of wind speeds, yaw angles, azimuth angle, pitch angles, and power of the atmospheric boundary layer profile. The calculated wind loads using blade element theorem were compared with those of estimated aerodynamic loads for the simplified blade shape. Wind loads for an NREL's 5 MW scaled offshore wind turbine rotor were also compared with those of NREL's FAST results for more verification. All of the 6-component wind loads including forces and moments along the three axis were represented on a non-rotating coordinate system fixed at the apex of rotor hub. The calculated wind loads are applicable for the dynamic analysis of the wind turbine system, or obtaining the over-turning moment at the foundation of support structure for wind turbine system.

A Method for Estimating the Lung Clinical Target Volume DVH from IMRT with and without Respiratory Gating

  • J. H. Kung;P. Zygmanski;Park, N.;G. T. Y. Chen
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.53-60
    • /
    • 2002
  • Motion of lung tumors from respiration has been reported in the literature to be as large as of 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). While such a margin is necessary, it may not be sufficient to ensure proper delivery of Intensity Modulated Radiotherapy (IMRT) to the CTV during the simultaneous movement of the DMLC. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: a) what is the dose error to a target volume without gated IMRT treatment\ulcorner b) what is an acceptable gating window for such treatment. In this study, we address these questions by proposing a novel technique for calculating the 3D dose error that would result if a lung IMRT plan were delivered without gating. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumor were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map ${\Phi}$ (x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasi periodic motion z(t) does not receive ${\Phi}$ (x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y)is inputted back into the dose calculation engine to estimate the 3D dose to a moving CTV. In this study, we model respiratory motion as a sinusoidal function with an amplitude of 10 mm in the superior-inferior direction, a period of 5 seconds, and an initial phase of zero.

  • PDF

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

A Study on the Correlation between Visual Perception Ability and Balance Ability in the Health Elderly (노인의 시지각 능력과 균형능력과의 상관관계에 관한 연구)

  • Jang, Yong-Su;Park, Chang-Sik;Lee, Hyoung-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the correlation between the visual perception ability and the static dynamic balance ability in health elderly. Method: The Motor Free Visual Perception Test-Row Score(MVPT-RS) and MVPT-Process Time(MVPT-PT) were used for evaluating the visual perception abilities. Assessment of the balance ability was taken by using Good Balance System. In the assessment using Good Balance System, X, Y coordinate speed, anterior-posterior direction, medial-lateral direction and Velocity Movement(VM) in standing posture when eye open were measured as static balance abilities. Thirty-seven healthy elderly who live in Gwangyang participated in the experiment for 2 months, from October to November 2010. Results: 1. There were statistically significant differences of MVPT-RS, MVPT-PT, NSB-X, NSB-Y, NSB-VM, OLB-X, and OLB-VM based on the gender(p<0.05). 2. The negative correlations of MVPT-RS:NSB-Y(r=-0.354), MVPT-RS:OLB-X(r=-0.4), MVPT-RS: OLB-Y(r=-0.371), but positive correlations of MVPT-PT:DTB-T showed a statistical significance(r=0.45, p<0.05). 3. The positive correlations of NSB-X:NSB-Y(r=0.54), NSB-X: NSB-VM(r=0.848), NSB-Y:NSB-VM(r=0.531), OLB-X:OLB-Y(r=0.876), OLB-X:OLB-VM(r=0.872), and OLB-Y:OLB-VM(r=0.787) showed statistical significances(p<0.05). Conclusion: These results showed that the visual perception ability was correlated with some balance ability in health elderly. Especially the perception test process time(MVPT-PT) has closely related with the DTB-T. The visual perception ability is considered as a factor on the balance ability in health elderly. Further study will focus on the development of improving program of visual perception ability as an improving method of balancing ability in health elderly.

  • PDF

A Study on Swarm Robot-Based Invader-Enclosing Technique on Multiple Distributed Object Environments

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.806-816
    • /
    • 2011
  • Interest about social security has recently increased in favor of safety for infrastructure. In addition, advances in computer vision and pattern recognition research are leading to video-based surveillance systems with improved scene analysis capabilities. However, such video surveillance systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous events, such as having an invader in the corporate, commercial, or public sectors. For this reason, intelligent surveillance systems are increasingly needed to provide active social security services. In this study, we propose a core technique for intelligent surveillance system that is based on swarm robot technology. We present techniques for invader enclosing using swarm robots based on multiple distributed object environment. The proposed methods are composed of three main stages: location estimation of the object, specified object tracking, and decision of the cooperative behavior of the swarm robots. By using particle filter, object tracking and location estimation procedures are performed and a specified enclosing point for the swarm robots is located on the interactive positions in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined via the result of path navigation based on the combination of potential field and wall-following methods. The results of each stage are combined into the swarm robot-based invader-enclosing technique on multiple distributed object environments. Finally, several simulation results are provided to further discuss and verify the accuracy and effectiveness of the proposed techniques.

A Comparison Analysis of Color Characteristics and Images in Flight Attendant Uniforms of Korea, China and Japan

  • Shao, Chiqian;Lee, Misuk
    • Journal of Fashion Business
    • /
    • v.17 no.6
    • /
    • pp.111-124
    • /
    • 2013
  • The purpose of this research was to conduct a comparison analysis of color in the characteristics and image of Korea/China/Japan airline uniforms. Research subjects for this research included 19 Korean, Chinese and Japanese airlines servicing the Incheon International Airport in South Korea. The analysis methods are based on the Munsell Color Order System and PCCS (Practical Color Coordinate System) tone classification in order to examine the color characteristics. For the color image analysis, the present research performed a positioning on Shigenobu Kobayashi's color images scale with adjectives in order to compare the resulting differences. As a result of the analysis, this research discovered the following; First, achromatic colors were found to be used most frequently in flight attendant uniforms of Korea/China/Japan. In Korean flight attendant uniforms, YR/Y, GY and B/PB/P; in Chinese, R/PB, RP, YR/Y/GY and BG/P; in Japanese, RP, R/P/PB and Y/BG were found in order. As for the main uniform colors, Korean flight attendant uniforms were found to be in the colors YR, and R/GY/B/P; Chinese flight attendant uniforms, R, PB, and P/B; and Japanese flight attendant uniforms, R, BG, B, RP and N. Second, Korean flight attendant uniforms used W and It most frequently; China flight attendant uniforms, W; and Japanese flight attendant uniforms, W and v. Regarding the main colors, Korean flight atteddant uniforms used lt/g and v/p; Chinese flight attendant uniforms, v, dp and s/d/dkg; and Japanese flight attendant uniforms, v/dkg and Bk. Third, after positioning each country's uniform color combination bars on the Kobayashi image scale, Korean flight attendant uniforms showed classic images along with casual/pretty/elegant/chic images; Chinese flight attendant uniforms displayed, casual images as well as, dynamic/gorgeous/chic/cool casual/dandy images; and finally, Japanese flight attendant uniforms converyed dandy images along with casual/gorgeous images. This research findings indicate that Korea/China/Japan airlines' flight attendant uniforms seek for differentiated image establishment by reflecting their own CIs and unique national cultures in the uniform color marketing.

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.