Browse > Article
http://dx.doi.org/10.5140/JASS.2004.21.4.351

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT  

Song, Young-Joo (Department of Astronomy and Space Science, Yonsei University)
Park, Eun-Seo (Department of Astronomy and Space Science, Yonsei University)
Yoo, Sung-Moon (Department of Astronomy and Space Science, Yonsei University)
Park, Sang-Young (Department of Astronomy and Space Science, Yonsei University)
Choi, Kyu-Hong (Department of Astronomy and Space Science, Yonsei University)
Yoon, Jae-Cheol (Korea Aerospace Research Institute(KARI))
Yim, Jo-Ryeong (Korea Aerospace Research Institute(KARI))
Kim, Han-Dol (Korea Aerospace Research Institute(KARI))
Choi, Jun-Min (Korea Aerospace Research Institute(KARI))
Kim, Hak-Jung (Korea Aerospace Research Institute(KARI))
Kim, Byung-Kyo (Korea Aerospace Research Institute(KARI))
Publication Information
Journal of Astronomy and Space Sciences / v.21, no.4, 2004 , pp. 351-360 More about this Journal
Abstract
An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.
Keywords
Mars; orbit propagation software; Mars coordinate system; perturbations near Mars;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beerer, J. G., & Dallas, S. S. 1994, Mars Global Surveyor Trajectory Characteristic Documents (California: JPL), pp.5.1-5.23
2 Brown, C. D. 1998, Spacecraft Mission Design Second Edition (Virginia : AIAA), pp.95-98
3 Chapront-Touze, M. 1990, A&A, 240, 159
4 Davies, M. E., Abalakin, V. K., Brahic, A., Bursa, M., Chovitz, B. H., Lieske, J. H., Seidelmann, P. K., Sinclair, A. T., & Tjuflin, Y. S. 1992, Celestial Mechanics and Dynamical Astronomy, 53, 377   DOI
5 Hilton, J. L. 1991, AJ, 102, 1510   DOI
6 Hong, P. E., Kent, P. D., & Vallado, C. A. 1992, Interplanetary Program To Optimize Simulated Trajectories (IPOST) Volume II Analytic Manual (Colorado: Martin Marietta Corp.), pp.26
7 Justus, C. G., & Johnson, D. L. 2001, Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) : Users Guide, pp.1-4
8 Lee, W., Beerer, J., & Dallas, S. 1996, Mars Global Surveyor Project Mission Plan Document Final Version, Rev. B (California: JPL), pp.6.1-6.18
9 Mase, R. A. 1999, Update to Mars Coordinate Frame Definitions (California: JPL), pp.6-23
10 Rosborough, G. W., & Lemoine, F. G., 1991, J. Astronaut. Sci., 39, 327
11 Sergeyevsly, Ai. B., Synder, G. C., & Cunniff, R. A. 1983, Interplanetary Mission Design Handbook, vol.1, part.2 (California: JPL), pp.18-31
12 Vaughan, R. 1995, Mars Pathfinder Project Planetary Constant and Models (California: JPL), pp.17-57