• Title/Summary/Keyword: Dynamic coating

Search Result 122, Processing Time 0.026 seconds

A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS (안내궤도 차량 부품의 피로 수명 예측에 관한 연구)

  • Lee, Soo-Ho;Park, Tae-Won;Yoon, Ji-Won;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Joong-kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

Dynamic Oxidation Behaviors of Aluminide Coated Titanium Alloys (알루미나이드 코팅된 티타늄 합금의 동적산화거동)

  • Son, Youngil;Park, Jinsoo;Park, Joonsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2015
  • Titanium alloys has been received an attention due to their excellent specific strength and many other superior properties in the application of components of flying subjects. In this study, Ti-6Al-4V (Ti64 alloy) has been selected in order to evaluate oxidation and degradation behaviors under the exposure of high temperature flame. The alloy has been coated with Al diffusion coating routes. The coated alloys showed an improved oxidation and degradation behaviors. The oxidation and degradation mechanism for the coated and uncoated alloys has been discussed in terms of microstructural observations.

Regional Cathodic Protection Design of a Natural Gas Distribution Station

  • Yabo, Hu;Feng, Zhang;Jun, Zhao
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.235-240
    • /
    • 2017
  • Regional cathodic protection has significant impact on pipeline integrity management. After risk analyses of a newly built gas distribution station constructed in an area with large dwelling density, risk score was high because of potential threat caused by galvanic corrosion. Except reinforced steel in concrete, there are four kinds of metal buried under earth: carbon steel, galvanized flat steel, zinc rod and graphite module. To protect buried pipeline from external corrosion, design and construction of regional cathodic protection was proposed. Current density was measured with potential using potential dynamic test and boundary element method (BEM) was used to calculate current requirement and optimize best anode placement during design. From our calculation on the potential, optimized conditions for this area were that an applied current was 3A and anode was placed at 40 meters deep from the soil surface. It results in potential range between $-1.128V_{CSE}$ and $-0.863V_{CSE}$, meeting the $-0.85V_{CSE}$ criterion and the $-1.2V_{CSE}$ criterion that no potential was more negative than $-1.2V_{CSE}$ to cause hydrogen evolution at defects in coating of the pipeline.

A Study on the Development of the Rotary and Linear Laser Modules (회전식 및 직선식 레이저 모듈 개발에 관한 연구)

  • Sim, Min-Seop;Hwang, Seong-Ju;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • Recently, laser processing technologies have been developed in many different industrial fields. The laser processing technologies are widely being applied such as laser assisted machining, cladding, heat treatment and coating. In the laser modules of the laser assisted machining system, laser lens is very important for accuracy and productivity of product. As the laser beam size, shape and focusing distance change, heat input energy of preheating point can be changed, the laser module of the laser assisted machining system should be equipped with various lenses differing beam size, beam shape and focusing distance. In this study, the rotary and linear laser modules are suggested. The finite element analysis is carried out to certify the static and dynamic stabilities of the developed laser modules. Finally, the rotary and linear laser modules have been fabricated successfully using the analysis results.

Comparative Study on Ejection Phenomena of Droplets from EHD Jet by Hydrophobic Coating of Nozzle (노즐의 소수성 코팅에 의한 EHD 제트의 액적 토출 현상 비교 연구)

  • Kim, Yong-Jae;Choi, Jae-Yong;Son, Sang-Uk;Ahn, Ki-Cheol;Keum, Hyun-Joon;Lee, Suk-Han;Byun, Do-Young;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1742-1746
    • /
    • 2008
  • An EHD (Electro-Hydro-Dynamic) jet for electrostatic inkjet head shows advantages to print micro-size patterns using various inks because it can generate sub-micron droplets and can use highly viscous inks. Thus, many researchers in industrial fields are concerned about the EHD jet in these days. Since the basic principle of the EHD jet is to form a droplet from an apex of meniscus at the end of the nozzle, the ejection mechanism can be changed by the shape of the meniscus. The stable ejection of the droplet is greatly affected by the shape of the meniscus which is also influenced by surface characteristics of the nozzle, electric potential and ink properties. Experiments have been performed using the nozzles with hydrophilic and hydrophobic coatings in this study. The hydrophobic nozzle forms the stable droplets in wider range of the electric potential than the hydrophilic nozzle does.

  • PDF

The Oil Film Analysis of Dynamically Loaded proceeding Bearing in Diesel Engine (동하중(動荷重)을 받는 선박용(船舶用) 디젤 엔진의 저널 베어링 유막해석(油膜解析)에 관한 연구(硏究))

  • Cha, Ji-Hyoub;Lee, Sang-Su;Kim, Jeong-Ryul;Kim, Ju-Tae;Kim, Jong-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.160-165
    • /
    • 2005
  • The proceeding bearings of marine diesel engine are affected by dynamic loads from the cylinder gas pressure and the inertia force from the crank mechanism. Oil film must support the load of the shaft and it also must protect the proceeding and the bearings from damage. This study uses Goenka's new curve fit to carry out the theoretical analysis of oil film in proceeding bearings for MAN B&W 12K90MC-C and Hyundai Heavy Industry Co., Ltd HiMSEN H21/32 Engine. The applied engine's analysis results show the behavior of the proceedings in main and crank pin bearings. The results of this study will be the proper criteria for the proceeding bearings design and be available for development of the new technology in the proceeding bearing and for the high strength lining coating.

  • PDF

Change of Dispersibility and Refractive Index of Zirconia Suspension Depending on Alkali Treatment Time (염기처리시간에 따른 지르코니아 현탁액의 분산성과 굴절율 변화)

  • Jo, Choong Hee;Ham, Dong Seok;Lee, Jae Heung;Ryu, Juwhan;Lee, Kee-Yoon;Cho, Seong Keun
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zirconia nanoparticles were widely used as filler in order to get high refractive index layer. However, dispersion of nanoparticles is difficult due to their agglomeration in solvent. In this study, the dispersibility of the zirconia suspension is promoted by controlling the steric hindrance and electrostatic interactions through the adsorption of PEI according to alkali treatment time. Also, to induce improved dispersibility on suspension, we changed the dispersion conditions variously and fabricated an ink formulation method for the coating layer. Zirconia suspension was characterized by dynamic light scattering (DLS), Zeta potential measurement, Transmission Electron Microscope (TEM) and FT-IR. We were able to confirm that good dispersion of zirconia suspension by alkali treatment and PEI led to high refractive index.

Damage Behaviors by Particle Impact Energy of $Al_2O_3-TiO_2$ Coated Glass Specimen ($Al_2O_3-TiO_2$ 용사코팅된 유리의 입자충격 에너지에 따른 손상거동)

  • Lee, Moon-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.107-114
    • /
    • 2012
  • Fracture of brittle material due to dynamic load such a particle impact has been reported by many researchers as the fracture behavior by variation of stress for a short minute. Especially, the brittle material, such a ceramic, applied to the structural component of machine, is considered as the important project. In order to evaluate the improvement of impact resistance, the particle impact test for the $Al_2O_3-TiO_2$ coated glass is practiced. And then, the damage variation according to the impact energy of steel ball was evaluated. There was a large improvement by the ceramic coating on the surface of a glass substrate. The damage volume was especially imported to evaluate damage behavior in quantity. These data were plotted on logarithmic coordinate and experimental equations were induced by data analysis based on test results. And the variation of critical energy for crack initiation was analyzed with critical impact energy when each crack occurs.

Improvement of Transparent Electrodes Based on Carbon Nanotubes Via Corona Treatment on Substrate Surface (기판의 코로나 표면처리에 의한 탄소 나노튜브 투명전극의 물성 향상)

  • Han, Sang-Hoon;Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, we investigate the effects of corona-discharge pre-treatment on the properties of carbon nanotubes (CNTs) which are used as flexible transparent electrodes. The CNTs are deposited on PET (polyethylene terephthalate) substrates using a spray coating method. Prior to the deposition of CNTs, the PET substrates are corona-treated by varying the feeding directions of the PET substrate and the numbers of treatments. The variations in the surface morphologies and roughnesses of the PET substrates due to corona-treatment are characterized via atomic force microscopy (AFM). Dynamic contact angles (DCAs) of the corona-treated PET substrates are measured and analyzed as functions of the treatment conditions. Also, the sheet resistances and visible-range transmittances of the CNTs deposited on PET substrates are measured before and after bending test. The experimental results obtained in this study provide strong evidences that the adhesive forces between CNTs and PET substrates can be substantially enhanced by corona-discharge pretreatment.

Molecular Dynamics Study on Behaviors of Liquid Cluster with Shape and Temperature of Nano-Structure Substrate (나노구조기판의 형상 및 온도변화에 따른 액체 클러스터의 거동에 대한 분자동역학적 연구)

  • Ko, Sun-Mi;Jeong, Heung-Cheol;Shibahara, Masahiko;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • Molecular dynamic simulations have been carried out to study the effect of the nano-structure substrate and its temperature on cluster laminating. The interaction between substrate molecules and liquid molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the liquid cluster on nano-structure substrate. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and platinum as nano-structure substrate to perform simulations of molecular dynamics. The effect of wettability on a substrate was investigated for the various beta of Lennard-Jones potential. The behavior of the liquid cluster and nano-structure substrate depends on interface wettability and function of molecules force, such as attraction and repulsion, in the collision progress. Furthermore, nano-structure substrate temperature and beta of Lennard-Jones potential have effect on the accumulation ratio. These results of simulation will be the foundation of coating application technology for micro fabrication manufacturing.

  • PDF