Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.1.1

Change of Dispersibility and Refractive Index of Zirconia Suspension Depending on Alkali Treatment Time  

Jo, Choong Hee (Department of Polymer Science and Engineering, Chungnam National University)
Ham, Dong Seok (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology)
Lee, Jae Heung (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology)
Ryu, Juwhan (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Kee-Yoon (Department of Polymer Science and Engineering, Chungnam National University)
Cho, Seong Keun (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.1, 2017 , pp. 1-7 More about this Journal
Abstract
Zirconia nanoparticles were widely used as filler in order to get high refractive index layer. However, dispersion of nanoparticles is difficult due to their agglomeration in solvent. In this study, the dispersibility of the zirconia suspension is promoted by controlling the steric hindrance and electrostatic interactions through the adsorption of PEI according to alkali treatment time. Also, to induce improved dispersibility on suspension, we changed the dispersion conditions variously and fabricated an ink formulation method for the coating layer. Zirconia suspension was characterized by dynamic light scattering (DLS), Zeta potential measurement, Transmission Electron Microscope (TEM) and FT-IR. We were able to confirm that good dispersion of zirconia suspension by alkali treatment and PEI led to high refractive index.
Keywords
zirconia suspension; NaOH treatment; dispersion; refractive index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sikarwara, B. C. Yadava, S. Singhb, G. I. Dzhardimalievac, S. I. Pomogailoc, N. D. Golubevac and A. D. Pomogailo, Sens. Actuators, B, 232, 283 (2016).   DOI
2 D. Lee, M. F. Rubner and R. E. Cohen, Nano. Lett., 6, 2305 (2006).   DOI
3 M. Berber, V. Bulto, R. Kliss and H. Hahn, Scr. Mater., 53, 547 (2005).   DOI
4 K. C. Krogman, T. Druffel and M. K. Sunkara, Nanotechnology, 16, 338 (2005).   DOI
5 F. J. Ferrer, F. Frutos, J. Garcia-Lopez, A.R. Gonzalez-Elipe and F. Yubero, Thin Solid Films, 516, 481 (2007).   DOI
6 S. Zhao, F. Ma, Z. Song and K. Xu, Opt. Mater., 30, 910 (2008).   DOI
7 T. Fengqiu, H. Xiaoxian, Z. Yufeng and G. Jingkun, Ceram. Int., 26, 93 (2000).   DOI
8 Z. Xie, J. Ma, Q. Xu, Y. Huang and Y. B. Cheng, Ceram. Int., 30 219 (2004).   DOI
9 F. Tang, L. Yu, X. Huang and J. Guo, Nanostruct. Mater., 11, 441 (1999).   DOI
10 K. Luo, S. Zhou and L. Wu, Thin Solid Films, 517, 5974(2009).   DOI
11 M. Sangermano, B. Voit, F. Sordo, K.-J. Eichhorn and G. Rizza, Polymer, 49, 2018 (2008).   DOI
12 X. Li, G. Wang, L. Huang, X. Kang, F. Cheng, W. Zhao and H. Li, Mater. Lett., 148, 22 (2015).   DOI
13 T. Muromachi, T. Tsujino, K. Kamitani and K. Maeda, J. Sol-Gel Sci. Tech., 40, 267 (2006).   DOI
14 M. Skovgaard, K. Almdal and A. van Lelieveld, J. Mater Sci., 46, 1824 (2011).   DOI
15 Michael J. Solomon, T. Saeki, Millie Wan, Peter J. Scales, David V. Boger and H. Usui, Langmuir, 15, 20 (1999).   DOI
16 E. Ukaji, T. Furusawa, M. Sato and N. Suzuki, Appl. Surf. Sci., 254, 563 (2007).   DOI
17 Jingxian Zhanga, Feng Yeb, Jing Suna, Dongliang Jiangc, Mikio Iwasa, Colloids Surf. A, 254, 199 (2005).   DOI
18 A. M. Jastrzcebskaa, J. Karcza, R. Letmanowskib, D. Zabostb, E. Ciecierskaa, J. Zduneka, E. Karwowskac, M. Siekierskib, A. Olszynaa and A. Kunickib, Appl. Surf. Sci., 362, 577 (2016).   DOI
19 H. G. Pedersen and L. Bergstrom, J. Am. Ceram. Soc., 82, 1137 (1999).
20 Kuiri F. Tjipangandjara and P. Somasundaran, Colloids Surf., 55, 245 (1991).   DOI
21 Y. K. Leong, P. J. Scales, T. W. Healy and D. V. Boger, Colloids Surf. A, 95, 43 (1995).   DOI
22 J. Cesarano III and I. A. Aksay, J. Am. Ceram. Soc., 71, 1062 (1988).   DOI
23 Jiakuan Sun, Bhaskar V. Velamakanni, William W. Gerberich and Lorraine F. Francis, J. Colloid Interf. Sci., 280, 387 (2004).   DOI
24 B. Faurea, G. Salazar-Alvareza, A. Ahniyazb, I. Villaluengac, G. Berriozabalc, Y. R De Miguelc and L. Bergstroma, Sci. Technol. Adv. Mater., 14, 023001 (2013).   DOI
25 N. Khanam, C. Mikoryak, R. K. Draper and K. J. Balkus Jr, Acta Biomater., 3, 1050 (2007).   DOI
26 Tasoula Kyprianidou-Leodidou, Walter Caseri and Ulrich W. Suter'J, Phys. Chem., 98, 8992 (1994).   DOI
27 K. L. Cho, Irving I. Liaw, Alex H.-F. Wu and Robert N. Lamb, J. Phys. Chem. C, 114, 11228 (2010).   DOI
28 Guillaumee, M., Liley, M.,Pugin, R. and Stanley, R. P., Opt. Express, 16, 1440 (2008).   DOI
29 Benjamin E. Reed, Roy G. Grainger, Daniel M. Peters and Andrew J. A. Smith, J. Opt. Soc. Am., 24, 1953(2016).