• Title/Summary/Keyword: Dynamic bearing capacity

Search Result 235, Processing Time 0.032 seconds

Performance Analysis of Gas Foil Journal & Thrust Bearings (가스포일 저널베어링 및 스러스트베어링의 성능해석)

  • Kim Young-Cheol;Han Jeong-Wan;Kim Kyung-Woong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-272
    • /
    • 2003
  • This paper presents a performance analysis model of corrugated bump foil bearings. The analyses for not only 1st generation bump foil journal bearings but also bump foil thrust bearings are performed. Static performances such as load capacity, attitude angle, pressure distribution, foil deflection, and film thickness are accurately estimated by using soft elasto-hydrodynamic analysis technique and finite difference numerical method. Also dynamic performances such as stiffness coefficients and damping coefficients are estimated by perturbation method. The analysis technique may be appliable to rotordynamic analysis, stability analysis, and optimized bearing design.

  • PDF

A Study on the Suppression of Instability Whirl of a Foil Bearing for High-Speed Turbomachinery beyond the Bending Critical Speed (고속 회전 터보 기기용 포일 베어링의 불안정 진동 제진에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.7-14
    • /
    • 2002
  • A new foil bearing, ViscoElastic Foil Bearing(VEFB) is suggested with the need for a high damping foil bearing. Sufficient damping capacity is a key technical hurdle to super-bending-critical operation as well as widespread use of foil bearings into turbomachinery. The super-bending-critical operation of the conventional bump foil bearing and the VEFB is examined, as well as the structural dynamic characteristics. The structural dynamic test results show that the equivalent viscous damping of the VEFB is much larger than that of the bump bearing, and that the structural dynamic stiffness of the VEFB is comparable or larger than that of the bump bearing. The results of super-bending-critical operation of the VEFB indicate that the enhanced structural damping of the viscoelastic foil dramatically reduces the vibration near the bending critical speed. With the help of increased damping resulting from the viscoelasticity, the suppression of the asynchronous orbit is possible beyond the bending critical speed.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

The Effect of Bearing Capacity Increasement for Driven Pile in Silt (실트지반에 타입된 말뚝의 지지력 증가효과)

  • Yeo, Byung Chul;Oh, Se Wook;Bae, Woo Seok;Ahn, Byung Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 2003
  • Recently, for the design of pile foundations on the soft ground condition, it is recognized that set-up effects are another important factor which influence the characteristics of bearing capacity of pile. In this paper, the thirteen dynamic pile loading tests were performed at the two different construction sites and the end of initial driving(EOID) were also performed and then restrike tests were performed after certain time lag. The H-pile, pipe pile, PHC pile are installed by driving into the loose silty soil and then restrike tests were performed. Nine days after pile driving, the bearing capacity of H and pipe pile were increased whereas there is not bearing capacity increasement with PHC pile. When the dense silty soil, the restrike test results showed that the bearing capacity of H and pipe pile increased up to 1.17 times. The 1-st and 2-nd restrike tests performed after 6 and 12 day, respectively. The results showed that the bearing capacity of PHC pile was decreased but the bearing capacity of piles were increased up to 1.38 times after 13 days with the third restrike test.

  • PDF

A Six Pole Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Uhn Joo Na
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.231-238
    • /
    • 2023
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 6-active-pole, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. some numerical examples of distribution matrices are provided to illustrate the new theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed bearing.

Dynamic Characteristics Analysis of a Rigid Rotor System Supported by Journal Air Bearings (저널 공기 베어링에 의해 지지되어진 강체 로터 계의 동특성 해석)

  • 권대규;곡순이;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1026-1031
    • /
    • 2001
  • In this paper. the dynamic characteristics of a super high-speed tilting-pad air bearing(TPGB) used in a turbo expander with high expansion ratio are analyzed. The dynamic behavior and stability of a rotary system supported by two journal air bearings are investigated numerically. The transient response of the shaft is obtained by simultaneously solving the equation of motion of the shaft and the dynamic Reynolds equation. The stiffness and damping coefficients of the bearing are calculated from the loading coefficients of the bearing are calculated from the loading capacity. shaft velocity and displacement by using a curve fitting method. The natural frequencies of the 1st and 2nd rigid modes can be calculated from these coefficients. The theoretical method of a rigid rotor system is verified by experimentsut.

  • PDF

Dynamic Characteristics of Externally Pressurized Air Pad Bearings with Closed Loop Grooves (닫힌 그루브를 갖는 외부가압 공기 패드 베어링의 동특성 해석)

  • Park, Gwang Won;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.309-314
    • /
    • 2017
  • This paper presents a theoretical investigation of the dynamic characteristics of externally pressurized air pad bearings with closed loop grooves. These grooves are made on the surface of bearings to reduce the number of supply holes so that manufacturing costs can be reduced. The semi-implicit method is applied to calculate the time varying pressure profile on the air bearing surface owing to the advantages of numerical stability and fast time tracing characteristics. The static pressure of the groove bearings is much higher than that without grooves, so the groove bearings can provide high load carrying capacity. The equation of motion considering vertical motion and tilting motion are also solved using the Runge-Kutta 4th order method. By combining the semi-implicit method and the Runge-Kutta method, fast calculations of the dynamic behavior of the air bearing can be achieved. The variations of bearing reaction force, air film reaction moment, height, and tilting angle are investigated for the step force input, which is 20% higher than the bearing reaction, when the nominal clearance is 6 mm. The effect of the groove width and the groove depth are investigated by calculating the dynamic behavior. The possibility of the air hammering with the depth of the groove is found and discussed.

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

Analytical Study to Determine the Dynamic Property of Control Equipment Room using LRB (납-고무베어링을 적용한 제어장치의 동적평가를 위한 해석적 연구)

  • 김우범;김대곤;이경진;박병구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.473-480
    • /
    • 2003
  • In these days, The base isolation system is often used improve the seismic capacity of the structure Instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using Lead Rubber Bearing. In this study, analysis numerical was performed to determine the optimal dynamic property of lead rubber bearing and damper which minimize the response of base from in main control room. Also the analytical results was composed with the test results peformed in previous study

  • PDF