• 제목/요약/키워드: Dynamic accuracy estimation

검색결과 182건 처리시간 0.028초

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator

  • Kim, Kiyoung;Choi, Jaemook;Koo, Gunhee;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.647-667
    • /
    • 2016
  • In this paper, dynamic displacement is estimated with high accuracy by blending high-sampling rate acceleration data with low-sampling rate displacement measurement using a two-stage Kalman estimator. In Stage 1, the two-stage Kalman estimator first approximates dynamic displacement. Then, the estimator in Stage 2 estimates a bias with high accuracy and refines the displacement estimate from Stage 1. In the previous Kalman filter based displacement techniques, the estimation accuracy can deteriorate due to (1) the discontinuities produced when the estimate is adjusted by displacement measurement and (2) slow convergence at the beginning of estimation. To resolve these drawbacks, the previous techniques adopt smoothing techniques, which involve additional future measurements in the estimation. However, the smoothing techniques require more computational time and resources and hamper real-time estimation. The proposed technique addresses the drawbacks of the previous techniques without smoothing. The performance of the proposed technique is verified under various dynamic loading, sampling rate and noise level conditions via a series of numerical simulations and experiments. Its performance is also compared with those of the existing Kalman filter based techniques.

On the Accuracy of RFID Tag Estimation Functions

  • Park, Young-Jae;Kim, Young-Beom
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.33-39
    • /
    • 2012
  • In this paper, we compare the accuracy of most representative radio frequency identification (RFID) tag estimation functions in the context of minimizing RFID tag identification delay. Before the comparisons, we first evaluate the accuracy of Schoute's estimation function, which has been widely adopted in many RFID tag identification processes, and show that its accuracy actually depends on the number of tags to be identified and frame size L used for dynamic frame slotted Aloha cycles. Through computer simulations, we show how the accuracy of estimation functions is related to the actual tag read performance in terms of identification delay.

지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법 (Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

초고속 비행체 제어기법 설계를 위한 비행체 동압 추정 기법 연구 (A Research on the Dynamic Pressure Estimation for the Control Law Design of High Speed Vehicle)

  • 박정우;김익수;박익수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.953-956
    • /
    • 2017
  • 본 논문에서는 비행 중에 추정되는 비행체 동압 정보의 일반적인 활용법에 대해 소개한다. 본 연구에서는 추정 정보의 정확성을 높여 비행의 신뢰성을 유지하기 위한 동압추정 기법을 제안하였다. 소개된 방법은 압축성 유동의 간단한 관계식을 통해 쉽게 확인할 수 있는 방법이지만, 초고속 비행체의 제어기법에 적용될 수 있는 높은 정확성을 가지는 양질의 동압정보를 제공하기 위한 방법론을 제안하고 그 활용성을 고찰하였다.

  • PDF

IMU 기반 자세 추정 칼만필터에서 공분산 모델링이 추정 정확도에 미치는 영향 (Effects of Covariance Modeling on Estimation Accuracy in an IMU-based Attitude Estimation Kalman Filter)

  • 최지석;이정근
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.440-446
    • /
    • 2020
  • A well-known difficulty in attitude estimation based on inertial measurement unit (IMU) signals is the occurrence of external acceleration under dynamic motion conditions, as the acceleration significantly degrades the estimation accuracy. Lee et al. (2012) designed a Kalman filter (KF) that could effectively deal with the acceleration issue. Ahmed and Tahir (2017) modified this method by adjusting the acceleration-related covariance matrix because they considered covariance modeling as a pivotal factor in the estimation accuracy. This study investigates the effects of covariance modeling on estimation accuracy in an IMU-based attitude estimation KF. The method proposed by Ahmed and Tahir can be divided into two: one uses the covariance including only diagonal components and the other uses the covariance including both diagonal and off-diagonal components. This paper compares these three methods with respect to the motion condition and the window size, which is required for the methods by Ahmed and Tahir. Experimental results showed that the method proposed by Lee et al. performed the best among the three methods under relatively slow motion conditions, whereas the modified method using the diagonal covariance with a high window size performed the best under relatively fast motion conditions.

Radial Reference Map-Based Location Fingerprinting Technique

  • Cho, Kyoung-Woo;Chang, Eun-Young;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제14권4호
    • /
    • pp.207-214
    • /
    • 2016
  • In this paper, we propose a radial reference map-based location fingerprinting technique with constant spacing from an access point (AP) to all reference points by considering the minimum dynamic range of the received signal strength indicator (RSSI) obtained through an experiment conducted in an indoor environment. Because the minimum dynamic range, 12 dBm, of the RSSI appeared every 20 cm during the training stage, a cell spacing of 80 cm was applied. Furthermore, by considering the minimum dynamic range of an RSSI in the location estimation stage, when an RSSI exceeding the cumulative average by ${\pm}6dBm$ was received, a previously estimated location was provided. We also compared the location estimation accuracy of the proposed method with that of a conventional fingerprinting technique that uses a grid reference map, and found that the average location estimation accuracy of the conventional method was 21.8%, whereas that of the proposed technique was 90.9%.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

VDS 및 AVI 자료를 이용한 고속도로 동적OD 추정 (Dynamic Origin-Destination Demand Estimation Using Traffic Data of VDS and AVI)

  • 김주영;이승재;이영인;손봉수
    • 대한교통학회지
    • /
    • 제23권7호
    • /
    • pp.125-136
    • /
    • 2005
  • 지난 몇 십년간 링크 단위의 교통자료를 이용한 동적OD 추정모델의 개발에 대한 연구가 다수 수행되어 왔다. 동적OD 추정모델의 한계점은 크게 2가지로 요약될 수 있다. 첫째, 동적 교통류 구현을 위해 교통시뮬레이션모형을 이용함에 따라 사전에 OD가 요구되며, 이는 결국 동적 교통류 모듈과 동적OD 추정모듈간 Bi-level Problem으로 접근해야 한다는 것이다. 둘째, 관측지점의 수가 OD쌍의 수보다 적기 때문에 교통자료의 추정치와 관측치간 오차를 최소화하는 다수의 OD쌍이 존재하는 과소식별문제로 귀결되며, 이로 인하여 추정된 OD와 실제 OD간 오차가 불가피하게 발생한다는 것이다. 본 연구에서는 기존의 Bi-level Problem을 해소하기 위해 VDS에서 수집되는 통행속도 및 점유율을 이용하여 동적 교통류를 구현하였으며, 동적OD 추정의 정확도를 제고하기 위해 VDS에서 수집되는 링크, 진출램프교통량의 관측치 및 일부 진출입램프에 설치된 AVI 자료를 복합적으로 이용한 동적OD 추정모델을 제안하였다. 칼만필터 알고리즘을 이용하여 사전에 설정된 iteration 동안 반복적으로 수행토록 하는 제안 모델은 진입램프에서 진출램프까지 소요되는 time-lag을 고려할 수 있으며 초기OD를 임의의 값으로 적용하는 경우에도 동적OD 추정의 정확도를 높일 수 있다. 서해안 고속도로를 대상으로 평가한 결과, VDS 자료만을 이용한 경우에 비해 더욱 좋은 결과를 보이는 것으로 분석되었다.