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I. INTRODUCTION 
 

A location-based service estimates the location of a 

moving object and accordingly provides an appropriate 

service. Recently, studies have been conducted to diversify 

the fields of application of location-based services, with 

indoor location-based services transcending the global 

positioning system (GPS), which is typically an outdoor 

location-based service [1]. 

GPS is a typical location-based service that is unsuitable 

for use in indoor environments since its signal strength 

weakens indoors and in shaded areas because of the poor 

penetrability of satellite signals [2]. Although indoor location 

estimation technologies using the ultra-wide band (UBW) 

[3], ultrasonic waves [4, 5], or radio-frequency identification 

(RFID) technology [6] can provide location information 

with high precision in an indoor environment, they have the 

disadvantages of complex infrastructure construction, high 

costs, and deterioration of network life [7]. To prevent such 

problems from occurring when using the aforementioned 

location estimation technologies, various location estimation 

technologies based on Wi-Fi installed inside buildings have 

been proposed. Synchronous methods, such as time of 

arrival (TOA) and time differences of arrival (TDOA), as 
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Abstract 

In this paper, we propose a radial reference map-based location fingerprinting technique with constant spacing from an access 

point (AP) to all reference points by considering the minimum dynamic range of the received signal strength indicator (RSSI) 

obtained through an experiment conducted in an indoor environment. Because the minimum dynamic range, 12 dBm, of the 

RSSI appeared every 20 cm during the training stage, a cell spacing of 80 cm was applied. Furthermore, by considering the 

minimum dynamic range of an RSSI in the location estimation stage, when an RSSI exceeding the cumulative average by ±6 

dBm was received, a previously estimated location was provided. We also compared the location estimation accuracy of the 

proposed method with that of a conventional fingerprinting technique that uses a grid reference map, and found that the 

average location estimation accuracy of the conventional method was 21.8%, whereas that of the proposed technique was 

90.9%. 
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well as asynchronous methods, such as angle of arrival 

(AOA) and fingerprinting techniques, have been applied to 

location estimation techniques using Wi-Fi [1]. 

The fingerprinting technique is based on empirical data. It 

estimates the location of an mobile station (MS) through a 

comparison of the received signal strength indicator (RSSI) 

during the position determination stage, by dividing the area 

where the position is to be determined in terms of cells, and 

stores the RSSI of each cell. The fingerprinting technique 

is widely used due to its suitability for indoor location 

positioning because no additional hardware is required and 

its implementation is simple [8, 9]. 

When a fingerprinting technique is used, a reference map, 

i.e., an RSSI database (DB) for position estimation, is one of 

the important factors determining the accuracy of location 

estimation. The precision usually increases with a decrease 

in the cell spacing. However, the RSSI shows changing 

values due to the surrounding environment. When a narrow 

cell spacing is selected, errors of location estimation occur 

because of the changes in the RSSI [9]. Furthermore, when 

constructing a reference map, many studies have set up grid-

type cells of constant spacing. However, in the case of a 

reference point located diagonally across from an access 

point (AP), an identical distance between them in the 

horizontal and vertical directions cannot be ensured. 

Therefore, in this paper, we propose a fingerprinting 

technique that estimates location by periodically selecting 

spacing that shows the minimum dynamic range of the RSSI 

in an indoor environment, and by constructing a radial 

reference map with an identical distance between the AP 

and every reference point. The remainder of this paper is 

organized as follows: in Section II, we describe the location 

estimation procedure for the conventional fingerprinting 

technique. The proposed fingerprinting method is introduced in 

Section III, and the experiment to test this method as well as 

its results is discussed in Section IV. The concluding 

remarks are presented in Section V. 

 

 

II. CONVENTIONAL FINGERPRINTING 
TECHNIQUE 

 

Fingerprinting techniques have recently attracted research 

interest as indoor wireless positioning technologies are 

based on the early stage of the RADAR system proposed by 

Bahl and Padmanabhan [10]. The RADAR system estimates 

location by using a radio wave model of a wireless signal 

and the nearest neighbor technique, which selects the 

location closest to a calculated point. 

In general, the following log-distance path-loss model is 

taken into consideration for wireless signals [11]:  
 

),log(10)( 0 dnLdL             (1) 

 

Fig. 1. Fingerprinting reference map. 

 

where L0(dB) denotes the loss on the basis of a 1-m distance, 

n indicates the path loss exponent, and d(m) represents the 

distance. However, the fingerprinting technique has an 

advantage that there is no need to find a wireless signal loss 

factor. This is because the effect of obstacles is already 

reflected, since the RSSI vectors are collected from the 

location where the AP is installed. 

The fingerprinting technique is divided into a training 

stage and a location positioning stage. During the training 

stage, by considering the area where the location is to be 

determined as a two-dimensional (2D) plane, shown in Fig. 

1, the pertinent plane is divided into grid-type cells, and the 

task of storing an RSSI vector of each cell is carried out. A 

point where an RSSI vector is collected is called a reference 

point. When the spacing has been set up with L points along 

the x- and y-axes, there are L ⅹ L = L
2
 reference points in 

the pertinent space [11]. For the RSSI of each reference 

point, multiple RSSIs are repetitively collected from a 

reference point to build a fingerprinting DB table. 

During the location positioning stage, a mobile device 

sends RSSI vectors received from different APs to a server, 

which estimates the location of the mobile device by using 

an algorithm. The typically used algorithms include the 

k-nearest neighbor (K-NN) algorithm and a location 

estimation algorithm that employs the Euclidean distance, 

which is a similarity function [1, 2, 8, 10]. 

The K-NN algorithm finds k points closest to a given 

point by comparing the RSSI vectors being measured at any 

given time against the RSSI vectors of the reference map 

constructed in the DB. The algorithm obtains the average 

values of these distances and estimates the location of the 

mobile device. 

The location estimation algorithm using the Euclidean 

distance calculates the distance between an RSSI vector 
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measured from a mobile device and an RSSI vector of a 

reference map constructed in the DB, as shown in Eq. (2): 
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i ii rZ               (2) 

 

where ρ denotes the RSSI of the reference map constructed 

in the DB and r indicates the RSSI measured from the 

mobile device. When a calculation is conducted using all 

RSSI vectors of the reference map by utilizing Eq. (2), the 

location of the mobile device is estimated using the 

coordinates of the nearest value.  

 

 

III. PROPOSED FINGERPRINTING TECHNIQUE 
 

This section describes the rationale for considering the 

minimum dynamic range of an RSSI, the training stage in 

constructing a radial reference map of the proposed 

fingerprinting technique, and the location estimation stage 

that considers the minimum dynamic range. 

 

A. Training Stage 
 

1) Extraction of the minimum dynamic range of an 

RSSI having periodicity in an indoor environment 

In an indoor environment, an RSSI has a dynamic range 

due to reflections, shadows, and fading, which occur due to 

obstacles such as walls, furniture, and other equipment [11]. 

When the cell spacing is selected such that an RSSI has a 

large dynamic range, a problem can occur in the accuracy of 

the location estimation because the probability of the RSSI 

being collected at an adjacent reference point with the same 

value increases. Furthermore, when the cell spacing of the 

reference map is narrow in order to estimate the accurate 

location, the location estimation error can increase because 

similar RSSI values are measured at various reference 

points. Therefore, as a prerequisite to setting the spacing of 

the reference map, a spacing where the RSSI periodically 

has a minimum dynamic range in an actual environment was 

obtained. 

In consideration of the actual environment in the context 

of our experiment to test our method, a classroom with all 

its furniture was chosen, and the experiment was conducted 

in an environment where people could move freely. At a 1-

cm spacing from a position 1 m in a straight line from the 

AP, the RSSI was collected for the 1-m distance. The RSSI 

was measured 100 times for each spacing, and a range of 

±10 dBm was set for the RSSI with the maximum frequency. 

Fig. 2 shows a graph of the dynamic range of RSSI 

measured at a spacing of 1 cm.  

A dynamic range of RSSI from a minimum of 9 dBm to a 

maximum of 18 dBm was observed. Table 1 presents a 

summary of the minimum dynamic range and the maximum 

dynamic range at a spacing of 10 cm. 

From the results of Table 1, it is difficult to calculate the 

periodicity for a minimum dynamic range of 9 dBm. 

However, in Table 2, which summarizes the data for a 20-

cm spacing from the initial 108 cm, a dynamic range of 12 

dBm was periodically found, which did not reach the 

minimum dynamic range of 9 dBm. 

Because the obstacles in each experimental environment 

were different, it is impossible to generalize the pertinent 

results for every environment. 

 

 

 
Fig. 2. Dynamic range of RSSI for each centimeter. 

 

 

Table 1. Minimum and maximum dynamic ranges of an RSSI in a 10-

cm range 

Range 

(cm) 

Min. dynamic 

range (dBm) 

Max. dynamic 

range (dBm) 

Min. distance 

(cm) 

100–109 12 18 108 

110–119 9 14 113, 119 

120–129 11 17 
120, 126, 

127, 128 

130–139 9 14 132, 135 

140–149 9 18 147 

150–159 9 18 150 

160–169 11 18 167, 168 

170–179 11 17 171, 179 

180–189 9 17 187 

190–199 12 18 191, 198 

 

 

Table 2. Minimum dynamic range of an RSSI at a spacing of 20 cm for 

a 108-cm distance 

Distance (cm) Min. dynamic range (dBm) 

108 12 

128 11 

148 12 

168 11 

188 12 
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Therefore, to consider the minimum dynamic range of the 

proposed RSSI, the range should be re-obtained according 

to the environment. In this study, we selected a cell spacing 

of 160 cm, a multiple of 20 cm, on the basis of the relevant 

experimental results. 

 

2) Construction of the radial reference map 

In the case of a reference map for a conventional 

fingerprinting technique, the reference points are set by 

dividing the positioning space into grids with constant 

spacing. However, because the reference points located 

diagonally across from the AP have different values of the 

spacing from the reference points in the horizontal and 

vertical directions, the minimum dynamic range of the RSSI 

proposed in this paper cannot be taken into account. 

Therefore, we constructed a radial reference map with equal 

spacing among all APs.  

 

 

 

Fig. 3. Initial reference map. 

 
 

 

Fig. 4. Final radial reference map. 

Centering on an AP, the initial circle had a radius of 108 

cm according to the experimental results, and subsequent 

circles became larger at a spacing of 160 cm, a multiple of 

20 cm. The APs were placed in a triangle by selecting an 

intersection point of the circles drawn with each AP as the 

center. Furthermore, with respect to the reference points, the 

intersection points were selected where all circles drawn 

from each AP intersected. Fig. 3 shows the initial radial 

reference map created according to the relevant rules. 

With respect to a reference point located at the same 

distance from all APs, a case exists where the RSSI vector 

receives the same value from each AP. Moreover, several 

intersection points with the same distance can be created on 

a single circle. This can lead to the problem of selecting a 

different reference point when determining the location of a 

device through a similarity function during the positioning 

stage. Therefore, for the final reference points, intersection 

points with a different radius from each AP were selected. 

Fig. 4 shows the final reference map wherein the reference 

points were selected according to the pertinent rules. 

Having determined the final reference points, we 

collected the RSSI from each reference point to construct a 

reference map DB table. When constructing the DB table, 

the minimum dynamic range of the RSSI, 12 dBm, was 

taken into account. Based on the RSSI vector that showed 

the maximum frequency of the RSSI collected from each 

reference point, only RSSI vectors corresponding to the 

range of ±6 dBm were selected, and the final reference map 

DB table was built using the average of the selected RSSI 

vectors.  

 

B. Location Estimation Stage 
 

1) Location estimation using a similarity function 

The location estimation stage uses the nearest neighbor 

technique, which finds the highest vector by calculating the 

similarity of the RSSI received from an actual smartphone 

as well as all the RSSI vectors of the reference map 

constructed during the training stage. The similarity 

functions used in the nearest neighbor technique include the 

Manhattan distance [11], the Euclidian distance [12], and 

the Tanimoto coefficient [13]. In this study, the Tanimoto 

coefficient was selected as the similarity function to 

estimate locations. 

The Tanimoto coefficient is also called the Jaccard 

coefficient and is defined as the ratio of the intersection of 

two given sets to their union. In the estimation stage of the 

RSSI vector and the location on the reference map, the 

similarity with the received RSSI vector can be described as 

follows:  
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In Eq. (3), k indicates the number of APs and rssii and 

rssi'i represent the signal strength value scanned by a user 

and the signal strength value stored in the DB table, 

respectively, for the AP j. The Tanimoto coefficient T has a 

value in the range of 0.0–1.0, and the RSSI vector showing 

the result closest to 1.0 has the highest similarity. Having 

compared the similarities of all the reference points, the 

reference point with the highest value of T is determined to 

be the location of the user. 

 

2) Final estimated location considering the 

minimum dynamic range 

For the RSSI received during the location estimation 

stage, cases involving a received RSSI with a large range of 

±20 dBm, as compared to an average RSSI value, also occur 

owing to environmental changes and signal reduction, 

among other reasons. This can become a factor of error 

when estimating location by using a similarity function. 

Therefore, prior to estimating location, an RSSI that is 

significantly different from the average RSSI value is 

regarded as the error, and a new RSSI vector is received to 

reduce the estimation error. Considering the minimum 

dynamic range of an RSSI, i.e., 12 dBm, obtained from 

experiments, we determined a range of ±6 dBm on the basis 

of the average received RSSI as an acceptable range of the 

RSSI value. Fig. 5 shows a flowchart to determine such an 

RSSI vector. 

 

 
Fig. 5. Flowchart for determining a valid RSSI vector. 

 

(a) 
 

 

(b) 

Fig. 6. Reference points. (a) Conventional method, (b) proposed method. 

 

 

For the first RSSI vector received, the location of the 

device is estimated using the results of the Tanimoto 

coefficient. The estimated location is stored in a variable 

showing the previous location, and each RSSI vector 

received in the second round and subsequently is checked to 

determine whether it falls within the range of 6 dBm of the 

cumulative average. If a received RSSI vector belongs to 

this range, the estimated location is transmitted; if it exceeds 

this range, the pertinent RSSI vector is eliminated. The 

eliminated RSSI vector is not included in the count, and the 

value of the previous location is transmitted for the relevant 

round. 

 

 

IV. EXPERIMENTAL RESULTS 
 

The proposed method was implemented in a laboratory 

with an area of 8.8 m × 10 m. To consider the actual 

environment, the laboratory equipment was not removed. 

The APs were located 1.1 m from the ground, and the 
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smartphone was arranged 0.8 m above it. The smartphone 

was placed near the reference points of the radial reference 

map, and a cell spacing of 80 cm was set. Furthermore, the 

location estimation results of a conventional fingerprinting 

technique and the proposed fingerprinting technique were 

compared. The reference points of each map are shown in 

Fig. 6. The estimated location was a reference point with the 

highest RSSI vector similarity obtained when using the 

Tanimoto coefficient as a similarity function. 

The location estimation results obtained from the 

reference map were verified using every 10 RSSI vectors 

received near the reference point on the radial reference map. 

The location was considered to have been correctly 

estimated if the estimated location showed an error in the 

radial distance of 160 cm or less, and was assumed to have 

contained an error if the error in the radial distance was 

greater than 160 cm. Based on the location estimation, the 

accuracy of the average location estimation was 21.8% for 

the conventional grid reference map, and 75.4% for the 

proposed radial reference map. Based on 10 location 

estimations near each reference point, the location 

estimation technique proposed in this paper was, on average, 

more accurate than the conventional method, as shown in 

Fig. 7. 

 

 
Fig. 7. Location estimation accuracy for each reference map.  

 

 
Fig. 8. Location estimation accuracy when the dynamic range of an 

RSSI is considered. 

Table 3. Location estimation results considering the dynamic range of 

the RSSI at reference point no. 4 

RSSI vector 
Basic RSSI vector 

estimation 

Variable-width RSSI 

vector estimation 

−56 −56 −53 4 4 

−59 −53 −59 4 4 

−56 −56 −50 1 1 

−56 −56 −59 4 4 

−50 −53 −59 1 4 

−56 −47 −59 9 4 

−56 −53 −59 4 4 

−50 −44 −56 3 4 

−56 −44 −59 7 4 

−59 −56 −56 4 4 

 

 

Furthermore, location estimation results considering the 

dynamic range of the RSSI at reference point no. 4 are 

presented in Table 3. We found that a location correction 

effect occurred when providing the location estimated in the 

preceding round with respect to the estimated locations of 

four RSSI vectors exceeding the ±6 dBm range from the 

cumulative average of the received RSSI. 

At all reference points of the radial reference map, the 

location estimation accuracies of the method, when 

considering the dynamic range and ignoring it, are shown in 

Fig. 8. Compared to the average location accuracy of 74.5% 

obtained when using only the radial reference map, the 

accuracy improved by 16.4% to 90.9% when the dynamic 

range was considered. 

 

 

V. CONCLUSION 
 

In this study, we experimentally obtained a spacing where 

an RSSI periodically recorded the minimum dynamic range, 

and developed a fingerprinting technique to estimate 

location by constructing a radial reference map such that the 

distances from all APs to a reference point were identical. 

Furthermore, by considering the minimum dynamic range of 

an RSSI in the location estimation stage, when an RSSI 

vector exceeded the ±6 dBm range with respect to the 

cumulative average RSSI value, we determined the value to 

be invalid and provided the previous estimated location. By 

comparing a conventional grid reference map and the 

proposed radial reference map in an experimental 

environment, we observed that the conventional and 

proposed methods exhibited an average location estimation 

accuracy value of 21.8% and 74.5%, respectively. Moreover, 

by estimating the locations on the proposed radial reference 

map when considering the dynamic range of an RSSI, we 

confirmed that the average location estimation accuracy 
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improved by 16.4% over the situation where the dynamic 

range was not considered. 
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