• Title/Summary/Keyword: Dynamic X-ray

Search Result 219, Processing Time 0.025 seconds

Microstructure-Sound Absorption Relationships of Polyurethane Foam and Application of Low Monos Polyol (폴리우레탄 폼의 미세구조와 흡음 관계 밑 Low Monos 폴리올의 응용)

  • Lee, Boo-Youn;Kim, So-Yeon;Lee, Kwang-Hee;Jin, Byung-Suk
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.289-296
    • /
    • 2007
  • The material factors influencing the sound absorption of the polyurethane foam were investigated with FT-IR, small-angle X-ray scattering (SAXS), and dynamic mechanical thermal analyzer (DMTA). The measurements were performed using the samples which had a similar cell structure but different absorption coefficients. It was found that the ability of the sound absorption of the polyurethane foams was closely related to the damping behavior over the transition range. In order to confirm the use of the low monol polyol (LMP) in high-performance applications, the polyurethanes based on LMP and polypropylene oxide polyol (PPG) were prepared by the solution polymerization method. The microstructure and the physical properties of these polyurethanes were compared. The PPG-based polyurethane showed a higher level of the phase-separated structure because the considerable amount of monol presented in PPG made a contribution to the increased chain mobility. However the short chains formed due to the monol species deteriorated the damping property. As a result, the LMP-based polyurethane showed the superior damping behavior as compared with the PPG-based one.

Study on the Fatigue Test and the Accelerated Life Test for Dental Implant using Universal-Joint Test Type (유니버설조인트 시험방식을 이용한 치과용 임플란트의 피로시험 및 가속수명시험에 관한 연구)

  • Do, Gyeong Hun;Lee, Seok Jin;Kim, Jong Mi;Kim, Sung Min
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Purpose : This paper is a comparative analysis results of the fatigue test for dental implants and accelerated life test by using a static type loading device commonly used in Korea and a dynamic type loading device (universal-joint) recommended by FDA. Methods : Fatigue tests of dental implant is based on ISO 14801 and classified into static load test and dynamic load test. The tests were carried out on three test specimens by four load stress steps under each loading device. For analysis on failure mode such as crack, fracture and permanent deformation of test specimens, we used X-ray three-dimensional computed tomography on test specimens before and after the fatigue tests. The design of the accelerated life test was based on the analysis results of the fatigue life data obtained from the dynamic load test and the statistical analysis software (Minitab ver.15) was used to analyze the appropriate life distribution. Results : As a result of the fatigue tests and the accelerated life tests at same acceleration condition under each test method, the fatigue life under the dynamic type loading device (universal-joint) was shorter than when static type loading device was applied. Conclusion : This paper can be used as a reference when the universal-joint type loading device for implants fatigue test is applied as ISO 14801.

A Study on the Dynamic Range Performance Evaluation Method of Detector with Variation of Tube Voltage and Automatic Exposure Control (AEC) in Digital Radiography (DR) -Focused on the Dynamic Step Wedge and Histogram Evaluation (DR(Digital Radiography)에서 관전압 및 자동노출제어장치의 감도 변화에 따른 검출기의 동적 범위 성능평가 방법연구 -Dynamic Step Wedge와 히스토그램 평가를 중심으로)

  • Hwang, Jun-Ho;Choi, Ji-An;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • This study proposes a method to evaluate the performance of a detector by analyzing the dynamic step wedge and histogram according to the change of the tube voltage and sensitivity when using the Automatic Exposure Control (AEC). The performance of a detector was evaluated by measuring X-ray quality, Entrance Surface Dose (ESD), tube current, dynamic range corresponding to detector sensitivities of S200, S400, S800, S1000 per tube voltage of 60, 70, 81, 90 kVp. As a results, all of the qualities satisfied the acceptance criteria, and the Entrance Surface Dose and tube current were decreased stage by stage as sensitivity was set higher. In the dynamic step wedge, the observable dynamic range has also increased as tube voltage became higher. The histogram showed the quantization separation phenomena as the tube voltage was set higher. The higher the sensitivity, the more the underflow and overflow occurred in which the amount of information on both ends of the histogram was lost. In conclusion, the deterioration in the performance of the detector was found to be insufficient to realize the change of the tube voltage and sensitivity when using the Automatic Exposure Control, and it is useful to use dynamic step wedge and histogram in evaluating detector performance evaluation.

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

Effects of Hamstring Flexibility and Dynamic Stability of Lower Lumbar according to Stretching and Massage Techniques (스트레칭과 마사지 기법이 넙다리뒤근의 유연성 및 아래 허리뼈의 동적 안정성에 미치는 영향)

  • Kim, Gi-Chul;Lee, Jeon-Hyeong;Kwon, Sang-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.609-617
    • /
    • 2013
  • PURPOSE: This study aims to provide effects of therapeutic techniques as well as basic materials of safety by comparing and analyzing the effects of hamstring flexibility and dynamic stability of lower lumbar according to Stretching and Massage Techniques to adults with reduced the flexibility of hamstring. METHODS: This study conducted differential diagnosis through sit and reach test(SRT) and Schober test to select subjects who have shortened hamstring without any spinal problem. Selected subjects were divided into two groups randomly; HSG(Hamstring Stretching Group, n=8) and HMG(Hamstring Massage Group, n=8) and they received treatment for 2 weeks. To take statistics, SRT and dynamic view using x-ray were used. RESULTS: On SRT, HSG and HMG showed significant difference between pre and post test. A comparison of the difference value between HSG and HMG, HSG($9.73{\pm}1.78$) has more remarkable outcome than HMG($2.78{\pm}0.56$). Lower lumbar intervertebral disc length test for Intervertebral disc length(IDL)L45 and IDLL5S1 did not show significant differences between two groups and difference value. CONCLUSION: This study showed that stretching is more effective to improve hamstring flexibility than massage technique. Especially, flexibility increase of the hamstring in vertebral stabilization cannot affect improvement possibility will make a flexibility in order and the intervention and stabilization exercise of the spine.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition (Verwey 전이와 마그네타이트의 전기적 및 자기적 특성)

  • Yoon, Sunghyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1302-1307
    • /
    • 2018
  • The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

Clinical and Radiological Outcomes of Unilateral Facetectomy and Interbody Fusion Using Expandable Cages for Lumbosacral Foraminal Stenosis

  • Park, Jin-Hoon;Bae, Chae-Wan;Jeon, Sang-Ryong;Rhim, Seung-Chul;Kim, Chang-Jin;Roh, Sung-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.6
    • /
    • pp.496-500
    • /
    • 2010
  • Objective : Surgical treatment of lumbosacral foraminal stenosis requires an understanding of the anatomy of the lumbosacral area in individual patients. Unilateral facetectomy has been used to completely decompress entrapment of the L5 nerve root, followed in some patients by posterior lumbar interbody fusion (PLIF) with stand-alone cages Methods : We assessed 34 patients with lumbosacral foraminal stenosis who were treated with unilateral facetectomy and PLIF using stand-alone cages in our center from January 2004 to September 2007. All the patients underwent follow-up X-rays, including a dynamic view, at 3, 6, 12, 24 months, and computed tomography (CT) at 24 months postoperatively. Clinical outcomes were analyzed with the mean numeric rating scale (NRS), Oswestry Disability Index (ODI) and Odom's criteria. Radiological outcomes were assessed with change of disc height, defined as the average of anterior, middle, and posterior height in plain X-rays. In addition, lumbosacral fusion was also assessed with dynamic X-ray and CT. Results : Mean NRS score, which was 9.29 prior to surgery, was 1.5 at 18 months after surgery. The decrease in NRS was statistically significant. Excellent and good groups with regard to Odom's criteria were 31 cases (91%) and three cases (9%) were fair. Pre-operative mean ODI of 28.4 decreased to 14.2 at post-operative 24 months. In 30 patients, a bone bridge on CT scan was identified. The change in disc height was 8.11 mm, 10.02 mm and 9.63 mm preoperatively, immediate postoperatively and at 24 months after surgery, respectively. Conclusion : In the treatment of lumbosacral foraminal stenosis, unilateral facetectomy and interbody fusion using expandable stand-alone cages may be considered as one treatment option to maintain post-operative alignment and to obtain satisfactory clinical outcomes.

Structural and Physical Properties of Antheraea pernyi Silk Fibroin Fiber Treated with $I_2-KI$ Aqueous Solution

  • Khan Md. Majibur Rahman;Gotoh Yasuo;Morikawa Hideaki;Miura Mikihiko
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.333-338
    • /
    • 2006
  • Silk fibroin (SF) fiber from the Antheraea pernyi silkworm was treated with a 1.23 N iodine-potassium iodide ($I_2-KI$) aqueous solution, and the structure and physical properties were investigated to clarify the effects of the iodine treatment. The noticeably high weight gain value of SF fiber, about 25 wt% was attributed to the absorption of polyiodide ions in the form of $I_3{^-}\;and\;I_5{^-}$. Fourier transform infrared spectroscopy and X-ray diffraction measurements suggested that polyiodide ions mainly entered the amorphous region. In addition, a new sharp reflection on the meridional direction, corresponding to a period of $7.0{\AA}$, was observed and indicated the possibility of the formation of mesophase structure of ${\beta}$-conformation chains. Dynamic viscoelastic measurements showed that the damping tan ${\delta}$ peak at $270^{\circ}C$ gradually shifted to lower temperature in the iodinated SF fibers, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of polyiodide ions. With heating above $254^{\circ}C$, the iodine component introduced intermolecular cross-linking of SF, and the melt flow of the sample was inhibited. The thermal decomposition stability of fibroin molecules was greatly enhanced by iodine treatment.