Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1302

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition  

Yoon, Sunghyun (Department of Physics, Gunsan National University)
Abstract
The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.
Keywords
Magnetite; Verwey transition; Inverse spinel; Normal spinel; Coordination crossover;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. J. Verwey, Nature (London) 144, 327 (1939).
2 W. Kundig and R. S. Hargrove, Solid State Commun. 7, 223 (1969).   DOI
3 H. N. Ok and B. J. Evans, Phys. Rev. B 14, 2956 (1976).   DOI
4 N. F. Mott and Z. Zinamon, Rep. Prog. Phys. 33, 881 (1970).   DOI
5 J. M. Daniels and A. Rosencwaig, J. Phys. Chem. Solids 30, 1561 (1969).   DOI
6 P. Novak, H. Stepankova, J. Englich, J. Kohout and V. A. M. Brabers, Phys. Rev. B 61, 1256 (2000).   DOI
7 J. Garcia, G. Subias, M. G. Proietti, J. Blasco and H. Renevier et al., Phys. Rev. B 63, 054110 (2001).   DOI
8 M. P. Pasternak, W. M. Xu, G. Kh, Rozenberg, R. D. Taylor and R. Jeanloz, J. Magn. Magn. Mater. 265, L107 (2003).   DOI
9 M. S. Senn, J. P. Wright and J. P. Attfield, Nature 481, 173 (2012).   DOI
10 H. Y. Huang, Z. Y. Chen, R.-P. Wang, F. M. F. de Groot and W. B. Wu et al., Nat. Commun. 8, 15929 (2017).   DOI
11 R. Reznicek, V. Chlan, H. Stepankova, P. Novak and J. Zukrowski et al., Phys. Rev. B 96, 195124 (2017).   DOI
12 H. Choi, S. J. Kim, E. H. Choi and C. S. Kim, IEEE Trans. Magn. 51, 2003604 (2015).
13 K. Yoshda and M. Tachiki, Prog. Theor. Phys. 17, 331(1957).   DOI
14 S. Chikazumi, Physics of Ferromagnetism, 2nd ed. (Oxford University Press, New York, 1997), p. 506.
15 Z. Yang, C. S. Wang, X. H. Li and H. X. Zeng, Mater. Sci. Eng. B 90, 142 (2002).   DOI
16 F. Walz, J. Phys.: Condens. Matter 14, R285 (2002).   DOI
17 S. Yoon, J. Magn. 16, 368 (2011).   DOI
18 G. Bate, Recording Materials in Ferromagnetic Materials, E. P. Wohlfarth ed. (North Holland Publishing, Amsterdam, 1980), Vol. 2, p. 430.
19 S. Chikazumi, Physics of Ferromagnetism, 2nd ed. (Oxford University Press, New York, 1997), p. 288.
20 A. H. Morrish, The Physical Principles of Magnetism (IEEE Press, New York, 2001), p. 507.
21 A. Kosterov, Earth Planet. Sci. Lett. 186, 245 (2001).   DOI
22 T. Gaudisson, G. Vazquez-Victorio, M. Banobre-Lopez, S. Nowak and J. Rivas et al., J. Appl. Phys. 115, 17E117 (2014).   DOI
23 Z. Tarnawski, A. Wiechec, M. Madej, D. Nowak and D. Owoc et al., Acta Phys. Pol. A 106, 771 (2004).   DOI