Browse > Article
http://dx.doi.org/10.5392/JKCA.2019.19.04.368

A Study on the Dynamic Range Performance Evaluation Method of Detector with Variation of Tube Voltage and Automatic Exposure Control (AEC) in Digital Radiography (DR) -Focused on the Dynamic Step Wedge and Histogram Evaluation  

Hwang, Jun-Ho (경희대학교병원 영상의학과)
Choi, Ji-An (경희대학교병원 영상의학과)
Kim, Hyun-Soo (신구대학교 방사선과)
Lee, Kyung-Bae (경희대학교병원 영상의학과)
Publication Information
Abstract
This study proposes a method to evaluate the performance of a detector by analyzing the dynamic step wedge and histogram according to the change of the tube voltage and sensitivity when using the Automatic Exposure Control (AEC). The performance of a detector was evaluated by measuring X-ray quality, Entrance Surface Dose (ESD), tube current, dynamic range corresponding to detector sensitivities of S200, S400, S800, S1000 per tube voltage of 60, 70, 81, 90 kVp. As a results, all of the qualities satisfied the acceptance criteria, and the Entrance Surface Dose and tube current were decreased stage by stage as sensitivity was set higher. In the dynamic step wedge, the observable dynamic range has also increased as tube voltage became higher. The histogram showed the quantization separation phenomena as the tube voltage was set higher. The higher the sensitivity, the more the underflow and overflow occurred in which the amount of information on both ends of the histogram was lost. In conclusion, the deterioration in the performance of the detector was found to be insufficient to realize the change of the tube voltage and sensitivity when using the Automatic Exposure Control, and it is useful to use dynamic step wedge and histogram in evaluating detector performance evaluation.
Keywords
Automatic Exposure Control (AEC); Sensitivity; Detector; Dynamic Range; Histogram;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R. D. Rodriguez, K. Y. Mitra, R. R. Baumann, and S. Lanceros-Mendez, "Indirect X-ray Detectors based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer," ACS Applied Material & Interfaces, Vol.10, No.15, pp.12904-12912, 2018.   DOI
2 K. Y. Shin and K. S. Karim, "a-Si:H TFT-Silicon Hybrid Low-Energy X-ray Detector," IEEE Transactions on Electron Devices, Vol.64, No.4, pp.1624-1629, 2017.   DOI
3 Z. Zhao, G. J. Gang, and J. H. Siewerdsen, "Noise, Sampling and the number of Projections in Cone-Beam CT with a Flat Panel Detector," Medical Physics, Vol.41, No.6, p.061909, 2014.   DOI
4 G. J. Bansal, "Digital Radiography. A Comparison with Modern Conventional Imaging," Postgraduate Medical J., Vol.82, No.969, pp.425-428, 2006.   DOI
5 S. Alexander, "Image Acquisition and Quality in Digital Radiography," Radiologic Technology, Vol.88, No.1, pp.53-66, 2016.
6 Y. H. Seoung, "Development of Self-Diagnosis Linearity Quality Assurance Technique in Computed Tomography by using Iodic Contrast Media," J. of the Korea Contents Association, Vol.15, No.5, pp.436-443, 2015.   DOI
7 Ministry of Health and Welfare No.338, Rules for the Safety Management of Diagnostic Radiation Generators, Ministry of Food and Drug Safety, 2015.
8 Y. J. Jeong, M. J. Kim, S. Y. Lee, T. H. Lee, and Y. H. Seoung, "Survey on Usage of Korean Quantitative Ultrasound for Proposing Quantitative Ultrasound Quality Control Guideline," J. of Radiological Science and Technology, Vol.41, No.4, pp.329-337, 2018.   DOI
9 P. Allisy-Roberts, P. Ambrosi, D. T. Bartlett, B. M. Coursey, L. A. DeWerd, E. Fantuzzi, and J. C. McDonald, ICRU Report 76, J. of ICRU, 2006.
10 E. Vano, D. L. Miller, C. J. Martin, M. M. Rehani, K. Kang, M. Rosenstein, P. Oriz-Lopez, S. Mattsson, R. Padovani, and A. Rogers, ICRP Publication 135, ICRP, 2017.
11 R. G. Lane, D. M. Stevens, J. P. Gibbons, L. J. Verhey, K. R. Hogstrom, E. L. Chaney, M. C. Martin, E. E. Klein, K. P. Doppke, B. R. Paliwal, R. E. Wendt III, and M. G. Herman, Report of AAPM Task Group 90, AAPM, 2006.
12 J. S. Lee and H. H. Park, "Evaluation on Organ Dose and Image Quality by changing kVp and Ion Chamber Combination while Taking Digital Chest Lateral Decubitus PA Projection," J. of the Korea Contents Association, Vol.15, No.1, pp.316-323, 2015.   DOI
13 S. J. Shepard, J. Wang, M. Flynn, E. Gingold, L. Goldman, K. Krugh, D. L. Leong, E. Mah, K. Ogden, D. Peck, E. Samei, and C. E. Willis, Report of AAPM Task Group 116, AAPM, 2009.
14 J. S. Lee, S. J. Ko, S. S. Kang, J. H. Kim, D. H. Kim, and C. S. Kim, "Quantitative Evaluation of Image Quality using Automatic Exposure Control and Sensitivity in the Digital Chest Image," J. of the Korea Contents Association, Vol.13, No.8, pp.275-283, 2013.   DOI
15 J. H. Hwang and K. B. Lee, "A Study on the Quantitative Analysis Method through the Absorbed Dose and the Histogram in the Performance Evaluation of the Detector according to the Sensitivity Change of Auto Exposure Control (AEC) in DR (Digital Radiography)," J. of the Korea Contents Association, Vol.18, No.1, pp.232-240, 2018.   DOI
16 J. A. Choi, J. H. Hwang, and K. B. Lee, "Analysis of Dosimeter Error and Need for Calibration Guideline by Comparing the Dose Area of the Built-in Dose Area Product and the Moving Dose Area Product when using Automatic Exposure Controller in Intervention," J. of the Korea Contents Association, Vol.18, No.11, pp.508-515, 2018.   DOI
17 J. H. Hwang, J. H. Jeong, H. S. Kim, and K. B. Lee, "Study on the Change of Absorbed Dose and Image Quality according to X-ray Condition of Detector in Digital Radiography(DR)," J. of the Korea Contents Association, Vol.17, No.9, pp.99-106, 2017.   DOI
18 G. Dougherty, Digital Image Processing for Medical Applications, Cambridge, 2009.
19 G. Dougherty, Pattern Recognition and Classification, Springer Science & Business Media, 2012.
20 D. Spiga, "X-ray Beam-shaping via Deformable Mirrors: Surface Profile and Point Spread Function Computation for Gaussian Beams using Physical Optics," J. of Synchrotron Radiation, Vol.25, No.1, pp.123-130, 2018.   DOI
21 A. K. Gilcrist, A. Jain, D. R. Bednarek, K. R. Hoffmann, and S. Rudin, "Accurate MTF Measurement in Digital Radiography using Noise Response," Medical Physics, Vol.37, No.2, pp.724-735, 2010.   DOI
22 E. Samei, N. T. Ranger, J. T. Dobbins, and Y. Chen, "Intercomparison of Methods for Image Quality Characterization. I. Modulation Transfer Function," Medical Physics, Vol.33, No.5, pp.1454-1465, 2006.   DOI
23 S. Yang, J. B. Han, N. G. Choi, and S. G. Lee, "The Review of Exposure Index in Digital Radiography and Image Quality," J. of the Radiation Protection, Vol.38, No.1, pp.29-36, 2013.   DOI
24 IEC, IEC 62494-1 : Medical Electrical Equipment - Exposure Index of Digital X-ray Imaging Systems - Part 1: Definitions and Requirements for General Radiography, 2008.
25 A. K. Poznanski, H. W. Fischer, J. E. Gray, W. R. Hendee, J. G. Kereiakes, H. L. Kundel, W. J. Tuddenham, and J. A. Zagzebski, Report of NCRP No.99, NCRP, 1988.
26 IEC, IEC 61267 : Medical Diagnostic X-ray Equipment - Radiation Conditions for Use in the Determination of Characteristics, 2005.
27 IEC, IEC 62220-1 : Medical Electrical Equipment - Characteristics of Digital X-ray Imaging Devices - Part 1: Determinations of the Detective Quantum Efficiency, 2003.
28 ISO, ISO 9236-1 : Photography - Sensitometry of Screen/Film Systems for Medical Radiography - Part 1: Determination of Sensitometric Curve Shape, Speed and Average Gradient, 2004.
29 http://www.raysafe.com/en/Products/Equipment/RaySafe%20ThinX#Downloads, 2018.12.11.