• Title/Summary/Keyword: Dynamic Spring Characteristic

Search Result 67, Processing Time 0.025 seconds

A Study of Dynamic Characteristic of the Leaf Spring for Freight Wagon After the Derailment (탈선 후 화물열차의 겹판스프링 동적특성 연구)

  • 이응신;이장무
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 2004
  • Particularly derailing freight wagon, which are loaded with dangerous chemicals, has large damages on humans and environment. In this paper the dynamic characteristic of the laminated leaf spring under extreme situation, for example derailment, is examined. The leaf spring has a static hysteresis. Not only the friction value, but also the spring rate are influenced by this hysteresis characteristic. Because of the static hysteresis of the leaf spring the spring rate must be used in normal operation depending upon the loading and the kind of the excitation with the up to 10-fold value of the static spring rate. Some characteristics of the leaf spring can be treated like well-known viscous damping, but fer special situation (preload and/or excitation) particular calculation are necessary.

Transfer Function Analysis of Cylindrical Coil Springs by Considering Surging Effect (서징 효과를 고려한 원통형 코일 스프링의 전달 함수 해석)

  • 김대원;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.145-151
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of cylindrical coil spring subjected to dynamic behavior. Transfer functions are presented for both deflection and transmitted force as the output with force as the input. Steady state sinusoidal magnitude ratio and transmittance are plotted along with experimental data. It is shown that dynamic characteristic of cylindrical coil spring must be used to enhance the reability of vibration system dynamic behavior analysis in actuating over some frequency.

  • PDF

Development of a Leaf Spring Moleling Method for Dynamic Analysis of a Mini-Bus (소형버스의 동역학 해석을 위한 판스프링 모델링기법 개발)

  • Park, T.W.;Yim, H.J.;Lee, G.H.;Park, C.J.;Jeong, I.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.1-6
    • /
    • 1998
  • A leaf spring plays an important role in a passenger bus. Since characteristic of a leaf spring has a hysteresis behaviour, modeling technique for a leaf spring is an important issue for passenger bus analysis. In this paper, modeling technique for a leaf spring is presented. First, non-linear FEM model of a leaf spring is constructed then it is used to make an approximated model to be used in dynamic analysis. The modeling procedure is ex-plained in step by step approach. Then, this model is applied to dynamic analysis of a mini-bus with flexible body and non-linear dynamic force element. The results are compared with test data.

  • PDF

Dynamic Behavior Analysis of a Helical Coil Spring Using Space Curve Vector (공간곡선 벡터에 의한 원통 코일 스프링의 동적 거동 해석)

  • 김대원;김종수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1015-1022
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of a helical coil spring subjected to dynamic behavior using space curve vector after considering elongation rate. Vibrations in helical coil spring can be divided into 3 modes such as vibrations of coil spring center axis' vertical direction. axis' horizontal direction, direction about center axis. However. these 3 modes are dependent one another and are characterized as coupled. The dependency was proved through both theoretically and experimentally analyzing the results of dynamic characteristics of coil spring center axis' vertical direction vibration by transfer matrix method using the governing equation of static equilibrium. Also this paper shows that pitch angle and active coils in coil spring affect the dynamic spring characteristics of the above 3 modes and are especially sensitive to the mode for vibration of axis' horizontal direction which most affects especially on dynamo stability of helical coil spring.

  • PDF

Design and Characteristic Analysis of Moving Magnet Type Linear Oscillatory Actuator with Spring Damper (스프링 댐퍼를 이용한 가동 자석형 리니어 진동 엑추에이터의 설계 및 특성해석)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • This Paper deals with the design of Moving Magnet type Linear Oscillatory Actuator(MM-LOA) using spring damper based on the design procedure and the characteristic analysis. MM-LOA is applied to variable load such as vaccum pump and compressor, The structure of piston type is selected to reduce a noise. MM-LOA has over-displacement in starting state because of the low inertia of mover To improve the starting characteristic, spring damper is used. The optimum spring constant of spring damper is detected and in consideration of spring damper, MM-LOA redesigned. The parameter is calculated by Finite Element Method(FEM). For the dynamic characteristic analysis, time differential method composed of voltage and kinetic equation is used. The propriety of the improved model is verified through the experimental results.

A Numerical Simulation for the Spring Hardness of a Free Piston Linear Engine (프리피스톤 리니어엔진의 스프링경도에 따른 수치해석연구)

  • Hung, Nguyenba;Oh, Yong-Il;Park, Kyu-El;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.404-411
    • /
    • 2012
  • This research numerically analyses the effects of the damping device on the operation characteristics of a free piston linear engine. In this paper, the free piston linear engine uses spring as a damping device. The investigated parameter is spring hardness which is varied at 0.5, 1, 2.9, and 14.7 N/mm. The effects of spring hardness on the dynamic characteristic, thermodynamic characteristic and electric power of the engine are investigated. Beside, the equivalent ratio is also changed to provide more information for this study. The simulation results show that, by increasing spring hardness from 0.5 to 14.7 N/mm, all of parameters related to dynamic characteristic such as piston velocity, acceleration, displacement, and frequency increase accordingly. Beside, the peak pressure in the cylinder and electric power are also increased when increasing spring hardness. The tendency is also observed at varied equivalent ratios.

A Design on the chassis frame of passenger car using beam and spring Elements (빔과 스프링 요소를 이용한 승용차의 차체 프레임 설계)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.89-96
    • /
    • 1999
  • This paper presents the optimization design technique on the joint stiffness and section characteristic factors of chassis frame, by using beam and spring elements in a given design package. Two correction methods are used for the optimization design of chassis frame. First is the equivalent inertia of moment method in relation to the section characteristic factors of joint zones, which are thickness , width and height of frame channel section. Second is the rotational spring element with joint stiffness of joint zones. The CAE example shows that the relationship of section characteristic factors and joint stiffness can effectively be used in designing chassis frame. In this point, if static and dynamic targets are given, the joint-zone and section characteristic factors of chassis frame intended may be designed and defined by using beam and rotational spring elements.

  • PDF

Modeling of a Multi-Leaf Spring for Dynamic Characteristics Analysis of a Large Truck (대형트럭 동특성 해석을 위한 다판 스프링의 모델링)

  • Moon Il Dong;Oh Seok Hyung;Oh Chae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.147-153
    • /
    • 2004
  • This paper presents an analytical modeling technique fer representing a hysteretic behavior of a multi-leaf spring used for a large truck. It divides a nonlinear hysteretic curve of the multi-leaf spring into four parts; loading part, unloading part and two transition parts. It provides conditions fur branching to a part of the curve corresponding to a current multi-leaf spring status. This paper also presents a computational modeling technique of the multi-leaf spring. It models the multi-leaf spring with three links and a shackle. It assumes those components as rigid bodies. The links are connected by rotational joints, and have rotational springs at the joints. The spring constants of the rotational springs are computed with a force from the analytical model of the hysteretic curve of the multi-leaf spring. Static and dynamic tests are performed to verify the reliability of the presented techniques. The tests are performed with various amplitudes and excitation frequencies. The hysteretic curves from the tests are compared with those from the simulations. Since th e presented techniques reproduce the hysteretic characteristic of the multi -leaf spring faithfully, they contribute on improving the reliability of the computational model of a large truck.

Dynamic Characteristic and Fault Analysis of the CANDU Nuclear Fuel Channel (CANDU 핵연료 채널에 대한 동특성 및 결함증상 해석)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.345-349
    • /
    • 2003
  • The dynamic behavior of CANDU nuclear fuel channel was analyzed by the use of 3-dimensional finite element method, under the various fault conditions such as a fault in the end fitting support and the removal/migration of the garter spring in the fuel channel, in order to predict the dynamic behavior for a degraded symptoms of CANDU nuclear fuel channel. Moreover, the frequency response analysis for possible fault conditions was also peformed considering the effects of the pressure tube vibration and flow-induced vibration by the coolant flow. From the analysis of the frequency responses, defects in the garter spring have influenced the changes of 2nd and 3rd modes and all the important modes are varied for the failure in the journal bearing in the end fitting body.

  • PDF