• Title/Summary/Keyword: Dynamic Speed Control

Search Result 1,002, Processing Time 0.026 seconds

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 이정기;남동선;양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2000
  • Is this paper, we studied on the automatic speech control system in real-time windows environment using voice recognition. The applied reference pattern is the variable DMS model which is proposed to fasten execution speed and the one-stage DP algorithm using this model is used for recognition algorithm. The recognition vocabulary set is composed of control command words which are frequently used in windows environment. In this paper, an automatic speech period detection algorithm which is for on-line voice processing in windows environment is implemented. The variable DMS model which applies variable number of section in consideration of duration of the input signal is proposed. Sometimes, unnecessary recognition target word are generated. therefore model is reconstructed in on-line to handle this efficiently. The Perceptual Linear Predictive analysis method which generate feature vector from extracted feature of voice is applied. According to the experiment result, but recognition speech is fastened in the proposed model because of small loud of calculation. The multi-speaker-independent recognition rate and the multi-speaker-dependent recognition rate is 99.08% and 99.39% respectively. In the noisy environment the recognition rate is 96.25%.

  • PDF

Adaptive Beamwidth Control Technique for Low-orbit Satellites for QoS Performance improvement based on Next Generation Military Mobile Satellite Networks (차세대 군 모바일 위성 네트워크 QoS 성능 향상을 위한 저궤도 위성 빔폭 적응적 제어 기법)

  • Jang, Dae-Hee;Hwang, Yoon-Ha;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.1-12
    • /
    • 2020
  • Low-Orbit satellite mobile networks can provide services through miniaturized terminals with low transmission power, which can be used as reliable means of communication in the national public disaster network and defense sector. However, the high traffic environment in the emergency preparedness situation increases the new call blocking probability and the handover failure probability of the satellite network, and the increase of the handover failure probability affects the QoS because low orbit satellites move in orbit at a very high speed. Among the channel allocation methods of satellite communication, the FCA shows relatively better performance in a high traffic environment than DCA and is suitable for emergency preparedness situations, but in order to optimize QoS when traffic increases, the new call blocking and the handover failure must be minimized. In this paper, we propose LEO-DBC (LEO satellite dynamic beam width control) technique, which improves QoS by adaptive adjustment of beam width of low-orbit satellites and call time of terminals by improving FCA-QH method. Through the LEO-DBC technique, it is expected that the QoS of the mobile satellite communication network can be optimally maintained in high traffic environments in emergency preparedness situations.

System Identification and Pitch Control of a Planing Hull Ship with a Controllable Stern Intercepter (능동제어가 가능한 선미 인터셉터가 부착된 활주선형 선박의 시스템 식별과 자세 제어에 관한 연구)

  • Choi, Hujae;Park, Jongyong;Kim, Dongjin;Kim, Sunyoung;Lee, Jooho;Ahn, Jinhyeong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.401-414
    • /
    • 2018
  • Planing hull type ships are often equipped with interceptor or trim tab to improve the excessive trim angle which leads to poor resistance and sea keeping performances. The purpose of this study is to design a controller to control the attitude of the ship by controllable stern interceptor and validate the effectiveness of the attitude control by the towing tank test. Embedded controller, servo motor and controllable stern interceptor system were equipped with planing hull type model ship. Prior to designing the control algorithm, a model test was performed to identify the system dynamic model of the planing hull type ship including the stern interceptor. The matrix components of model were optimized by Genetic Algorithm. Using the identified model, PID controller which is a classical controller and sliding mode controller which is a nonlinear robust controller were designed. Gain tuning of the controllers and running simulation was conducted before the towing tank test. Inserting the designed control algorithm into the embedded controller of the model ship, the effectiveness of the active control of the stern interceptor was validated by towing tank test. In still water test with small disturbance, the sliding mode controller showed better performance of canceling the disturbance and the steady-state control performance than the PID controller.

Adaptive Cross-Layer Resource Optimization in Heterogeneous Wireless Networks with Multi-Homing User Equipments

  • Wu, Weihua;Yang, Qinghai;Li, Bingbing;Kwak, Kyung Sup
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.784-795
    • /
    • 2016
  • In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.

Fuel Spiking Test for the Surge Margin Measurement in a Gas Turbine Engine (연료 돌출 시험에 의한 가스터빈엔진의 서지마진 측정)

  • Lee, Jin-Kun;Lee, Kyung-Jae;Ha, Man-Ho;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal is superposed on the engine controller demand signals and the combined signals are used to control a fuel control valve. For the superposition, a subsystem composed of a fuel controller and a function generator is used. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the preliminary test, the fuel spiking signals are in good agreement with the dynamic pressure at the fuel line and at the compressor discharge point. After the preliminary test, a fuel spiking test to measure the surge point at a specific engine speed was performed. The test results show that the fuel spiking test is very effective in the measurement of surge.

A Study on the Control System of Permanent Magnet Linear Synchronous Motor Applied to the Z-axis Operation Structure (Z축 운전구조를 갖는 선형 영구자석형 동기 전동기 운전제어에 관한 연구)

  • Choi, Chul;Lee, Jin-Ha;Park, Han-Woong;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • PMLSM(Permanent Magnet linear Synchronous Motor) has widely applied to industrial automations, machine tools and semiconductor equipments due to the merit on the reduction of noise, vibration and the superior dynamic characteristics in comparison to the conventional method, which uses mechanical transfer equipments. Especially, in the case of applying to Z-axis operation structure, control system needs the method of an initial angle setting and the improvement of up/down operation characteristics. This paper proposes an initial angle setting algorithm and a variable gain schedule using real speed and moving direction to improve up/down operation characteristics. The effectiveness of proposed algorithms Is demonstrated by comparing to a conventional gain system via 4-point absolute positions profile with each velocity, acceleration and deceleration.

Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method

  • Kim, Min-Jae;Hong, Ji-Seung;Kim, Chang-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and solved DMS technique. The DMS method is easy in handling constraints and it has large convergence radius compared to other strategies. When parameterized with piecewise constant controls, the problems become most effectively tractable because the search direction is easily estimated by solving the structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. This study focused on the approximation of the KKT system using the matrix exponential and its integrals. The propose method is validated by solving optimal control problems for the linear system where the KKT system is exactly expressed with the matrix exponential and its integrals. The trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the effects of algorithmic details. The results show the matrix exponential approach to compute gradients and the Hessian matrix is most efficient among the implemented methods when combined with the mixed time integration method for the system dynamics. The analyses with the proposed method show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used to solve critical areas of helicopter flight dynamic problems.

Control System for Ship Collision Avoidance considering the Effect of Wind and Ship's Manoeuvrability

  • Im, Nam-Kyun;Lee, Seung-Keon;Hwang, Seong-Joon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.

A Study on Damping Improvement of a Synchronous Generator with Static VAR Compensator using a Fuzzy-PI Controller (퍼지-PI 제어기를 이용하여 정지형 무효전력 보상기를 포함한 동기 발전기의 안정도 개선에 관한 연구)

  • 주석민;허동렬;김상효;정동일;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2001
  • This paper resents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the must fiexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be barred on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and allied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

  • PDF

Development of a Time-Domain Simulation Tool for Offshore Wind Farms

  • Kim, Hyungyu;Kim, Kwansoo;Paek, Insu;Yoo, Neungsoo
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1047-1053
    • /
    • 2015
  • A time-domain simulation tool to predict the dynamic power output of wind turbines in an offshore wind farm was developed in this study. A wind turbine model consisting of first or second order transfer functions of various wind turbine elements was combined with the Ainslie's eddy viscosity wake model to construct the simulation tool. The wind turbine model also includes an aerodynamic model that is a look up table of power and thrust coefficients with respect to the tip speed ratio and pitch angle of the wind turbine obtained by a commercial multi-body dynamics simulation tool. The wake model includes algorithms of superposition of multiple wakes and propagation based on Taylor's frozen turbulence assumption. Torque and pitch control algorithms were implemented in the simulation tool to perform max-Cp and power regulation control of the wind turbines. The simulation tool calculates wind speeds in the two-dimensional domain of the wind farm at the hub height of the wind turbines and yields power outputs from individual wind turbines. The NREL 5MW reference wind turbine was targeted as a wind turbine to obtain parameters for the simulation. To validate the simulation tool, a Danish offshore wind farm with 80 wind turbines was modelled and used to predict the power from the wind farm. A comparison of the prediction with the measured values available in literature showed that the results from the simulation program were fairly close to the measured results in literature except when the wind turbines are congruent with the wind direction.