• Title/Summary/Keyword: Dynamic Relaxation Method

Search Result 81, Processing Time 0.031 seconds

Dielectric and Transport Properties of Acetonitrile at Varying Temperatures: a Molecular Dynamics Study

  • Orhan, Mehmet
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1469-1478
    • /
    • 2014
  • Use of acetonitrile in electrolytes promotes better operation of supercapacitors. Recent efforts show that electrolytes containing acetonitrile can also function in a wide range of operating temperatures. Therefore, this paper addresses the dielectric relaxation processes, structure and dynamic properties of the bulk acetonitrile at various temperatures. Systems of acetonitrile were modeled using canonical ensemble and simulated by employing Molecular Dynamics method. Results show that interactions among the molecules were correlated within a cut-off radius while parallel and anti-parallel arrangements are observed beyond this radius at relatively high and low temperatures respectively. Furthermore, effects of C-C-N and C-H bending modes were greatly appreciated on the power spectral density of time rate change of dipole-dipole correlations whereas frequency shifts were observed on all modes at the lowest temperature under consideration. Linear variations with temperature were depicted for reorientation times and self-diffusion coefficients. Shear viscosity was also computed with a good accuracy within a certain range of the temperature as well.

Dynamics of thick hygrothermal viscoelastic composite laminates through finite element method

  • Assie, Amr E.;Mahmoud, Fatin F.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.727-734
    • /
    • 2004
  • An uncoupled computational model for analyzing the hygrothermal dynamic response of composite laminates has been developed. The constitutive equations, expressed in an integral form, and involving relaxation moduli are adopted, to describe the non-aging hygrothermorheologically simple materials. A Prony series represents the relaxation moduli is exploited in order to derive a recursive relationship, and thereby eliminate the storage problem that arises when dealing with material possessing memory. The problem is formulated in a descritized variational form. Mindlin and higher order finite elements are employed for spatial descretization, while the Newmark average acceleration scheme is exploited for temporal descritization. The adopted recursive formula uses only the details of the previous event to compute the details of the current one. Numerical results of the displacement fields of both thin and thick viscoelastic laminates problems are discussed to show up the effectiveness of Mindlin and higher-order shear theories.

The Analysis of Shaft Center Locus in the Refrigeration & Air-conditioning Rotary Compressor (냉동.공조용 로터리 콤프레서의 축심궤적 해석)

  • 조인성;장원수;김진문;김동우;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 1996
  • Rapid increase of Refrigeration and Air conditioning system in modem industries brings attention to the urgency of core technology development in the area. This paper presents theoretical investigation of the lubrication characteristics of rotary compressor for refrigeration and air conditioning. In order to analyze the lubrication characteristics of the main & sub bearing of rotary compressor, the bearing force and locus of shaft center are analyzed by the dynamic analysis of rotary compressor and numerical analysis of Reynolds equation as the operating condition is changed in various ways. In this paper, we used the Runge-Kutta method for the dynamic analysis of rotary compressor and the SOR (Successive OverRelaxation) method for the numerical analysis of Reynolds equation. The result shows that the operating condition of sub bearing is severer than that of main bearing, and eccentricity ratio grows as the bearing force increases. It is believed that the result can be applied to the design of alternative refrigerant rotary compressor.

Influence of Image Training on Static and Dynamic Balance for College Students (일반 대학생의 이미지 상상훈련이 정적 및 동적 균형에 미치는 영향)

  • Nam, Hyoungchun;Lim, Kyungil;Kim, Suhyeon;Kim, Seoji;Kim, Jiseon;Ryu, Youngwoo;Park, Inae;Lee, Subin;Jin, Hanbin;Moon, Junseok;Jang, Sehoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.2 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Purpose : This study was to investigate the influence of imagery balance for healthy normal people in their twenties. Method : The study has taken a place in Kyung-buk college in Yung-jusi in Kyungbuk with a group of 21 healthy peoples. The study used measurement of good balance. we measured balance for data of each static and dynamic. Training period, a total of 2 weeks. Except Saturday and Sunday, the study did weekdays. Fist, 2-minute relaxation. Second, 6-minute imagine training. Third, 2-minute relaxation. Total 10-minute training was conducted per training. Result : In study, the subjects were compared date for before the study to date for after the study. The subjects showed a little change in each Balance. But, the improvement of balance was not a big change. Conclusion : Image training kinesthetic image using hearing improved incompletely inspite of being no gap, numerically balance.

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

AN APPLICATION OF LAGRANGIAN RELAXATION ALD SUBGRADIENT METHOD FOR A DYNAMIC UNCAPAITATED FACILITY COCATION PROBLEM

  • Song, Jae-Wook;Kim, Sheung-Kown
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.2
    • /
    • pp.47-58
    • /
    • 1988
  • The dynamic uncapacitated facility location model is formulated by a mixed integer programming. It has the objective of minimizing total discounted costs for meeting demands specified in different time periods at various demand centers. Costs include those for operation of facilities to demand centers and a fixed cost associated with the capital investment. The problem is decomposed into two simple Lagrangian relaxed subproblems which are coordinated by Lagrangian multipliers. We explored the effect of using the subgradient optimization procedure and a viable solution approach is proposed. Computational results are presented and further research directions are discussed.

  • PDF

Study on the Deformation Characteristics of Grain Boundary in Nanolithography Process (분자동력학을 이용한 나노 리소그래피 공정의 결정립계의 변형 거동 연구)

  • Kim, Chan-Il;Hyun, Sang-Il;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.326-331
    • /
    • 2007
  • Large-scale molecular dynamics simulations are performed to verify the deformation characteristics of grain boundaries in nanolithography process. The copper substrate made of 200,000 atoms is constructed by two grains in different crystal orientations using dynamic relaxation method. The grain boundary is located in the middle of the substrate with $45\sim135$ degree angles. The plowing tip is made of diamond-like-carbon atoms in a variety of shapes. In the simulations, the generation, propagation, and accumulation of dislocations are observed inside the substrate. From the numerical results, we address the dynamic behavior of the grain boundaries as well as the frictional characteristics in terms of the morphology of initial grain boundaries.

  • PDF

Non-linear Static Analysis and Determination of Initial Equilibrium States of Space Cable Nets (3차원 케이블망의 정적 비선형 해석 및 초기 평형상태의 결정)

  • 김문영;김남일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.134-141
    • /
    • 1997
  • A geometrically non-linear finite element formulation of spatial cable networks is presented using three cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element, and the isoparametric cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static non-linear behaviors of cable nets.

  • PDF

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

New Rehabilitation Method of Prestressed Concrete Rahmen Bridge with a Hinge at Midspan (프리스트레스트 콘크리트 활절 라멘교의 신보강공법 (상진대교구교적용))

  • 이원표;하성욱;김성호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.979-984
    • /
    • 2001
  • The Sang-Jin bridge constructed by the Free Cantilever Method in 1985 is 4-span concrete rahmen bridge with a hinge at midspan. Due to the effect of creep, shrinkage of concrete and relaxation of tendon, the Sang-Jin bridge exposed the excessive displacement at midspan with the passage of time. In order to improve the load-carrying-capacity and durability of the bridge, needs to repair and rehabilitate the structure emerged. New rehabilitation methods were applied such as external prestressing of concrete box, application of pier pre-camber and steel truss jacking. Structural analysis and several tests including static load test, dynamic load test and ambient vibration test were executed to verify the improvement. The test result showed that the displacement of the midspan was improved by 10mm and it was verified that the stiffness of the bridge was increased. Totally, the load-carrying-capacity of Sang-Jin bridge was increased at least 1.56times which was attributed to the new rehabilitation method.

  • PDF