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ABSTRACT

The dynamic uncapacitated facility location model is formulated by a mixed integer programming. It has the objective
of minimizing total discounted costs for meeting demands specified in different time periods at various demand centers.
Costs include those for operation of facilities to demand centers and a fixed cost associated with the capital investment.
The problem is decomposed into two simple Lagrangian relaxed subproblems which are coordinated by Lagrangian
multipliers. We explored the effect of using the subgradient optimization procedure and a viable solution approach

is proposed. Computational results are presented and further research directions are discussed.

1. INTRODUCTION
" Dynamic Uncapacitated Facility Location(DUFL) problems are a type of the problem that we would encounter
when we try to setup an optimal long range planning for a firm'’s operation. It can be considered as the generaliza-
tion of a static plant location problem in the dynamic context[1, 11, 12]. It involves the determination of
the time-staged establishment of facilities at different locations so as to minimize the total discounted costs
for meeting demands specified over time at various demand centers. This problem is closely related to the
capacity expansion problems. Capacity expansion is the addition of similar facilities over time to meet increasing
demand. Discussions of these problems with several applications are given by many researchers(2, 5. 6. 9.
101.

Ever since solution methods for the DUFL problem have been developed by Roodman and Schwartz[ 14,
151, different aspects of this problem have been investigated under various assumptions[3. 6, 9, 17].

Van Roy & Erlenkotter(1982) proposed powerful dual-based procedures for the DUFL problems. In this paper,
we investigated the effectiveness of using Lagrangian relaxation with the subgradient method. We assume that
the facility opened in period t, will remain opened through a planning horizon as in the capacity expansion context.

We consider the case where the fixed capital investment cost is proportional to the amount shipped, in other

words, the cost associated with the capital investment consists of a fixed cost and a linear portion of it.
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2. MODEL
2.1 MATHEMATICAL FORMULATION

The assumptions for our study are as follows 3

1) Each facility can be expanded without any restriction on capacity, that is, it can be built to large enough
specification if this is suggested by the analysis. (Uncapacitated Facility Location Problem)

2) The expansion cost occurred is ignored. This will be discussed at later section.

3) Time is treated as a discrete variable. '

4) The planning horizon and the number of facility and demand center is finite.
5) Variable operation and distribution cost is proportional to the amount supplied from facility to demand region.

6) Initial capacity of each facility is zero.
7) The investment cost F; is incurred at the start of time period that facility is operated and the construction
time is taken as being small.

8) The demand D; is deterministic and non-decreasing.

Under these assumptions, the mathematical model of the dynamic uncapacitated facility location problem may

be formulated as follows 3

[P] Min Z}/:Z,‘, Ci ,,,+;2[:F,-,(Y,,—Y,-,v,) (1)
ST. ZXi = 1  vjel teTT (2)
)'(chY.', viel je] teTT {3)
Yi=Y-=0 viel teTT (4)

X0 viel je] teTT {5)
Yi=0o0r 1 vi€el teTT (6)

where, Yo =0 Vi€l (7

where, I =1(1,...,m) : the set of facilities to be open
J =4(1,....n) :the set of demand centers
TT =(1,....T) ! the set of time periods

And for i€l, je], teTT, we define the following notations.

X; = the fraction of demand center j 's demand, D; from facility i, in period t
Y, =

Pt

, if facility i is open in period t:
0, otherwise 3
UC; = the unit cost of producing and shipping center j from facility i3
D, = demand at each demand center j in time period t 3
Cy = the total discounted cost of producing and shipping demand center j 's demand in time period t from
facility i.



Cy = UC;* Dy *kexp[-r(t—1)] (r : continuous discount rate)*

F; = the discounted fixed cost for opening facility i in time period t

Constraints (2) mean that each region’s demand should be met through the planning horizon. Constraints
(3) require that a facility cannot be operated before it is opened. Constraints (4) state that any facility once

opened remain open in all successive periods.

2.2 LAGRANGIAN SUBPROBLEM

We know that the optimal value of the Lagrangian relaxed problem is the lower bound of the original minimiza-
tion problem. Now, choosing the disaggregated (strong) constraint, {3) as the set of complicating constraints
to be relaxed, let Up(G=1,....m37=1,...m 3 t=1,....7) be nonnegative Lagrangian multipliers associated
with the Zjt-th constraint in the equation. Then the primal problem [P] can be converted to the Lagrangian

relaxation problem [LR] as follows ;

[LR] Z[)(U) = Min. ZZZ(C,,:+U,z)X/1+ZE[EI(Y:1_Y:rl)_;UwYu] (8)
iojot [
ST. (2), (4), (5), (6], (T)

Taking advantage of the seperation of Xj; and ¥, [LR] can be decomposed into two independent subproblems,
associated with X;; in [LRI] and Y,in [LR2].

(LR1] Min. E_E;(c,ﬁ Ui Xy (9)
ST. (2), (5)
[LRZ:] Min.Z Z [Fil(yu_ Yu— 1) - E Uquu] (10)
it i
ST. (4), (6), (7) ’

Hence, the Lagrangian dual problem [D] to the primal [P] is as follows ;

(D] Zp = Max. Z,(U) 1
= Max. [[LRI]+[LR2]] 12)
S.T. U=0

2.3 ADDITIONAL EXPANSION COST

If we consider the additional expansion cost, which is assumed to be proportional to the amount shipped

from each facility, the objective function (1) would include the following additional term.

zz: [Z(DXi Dy - @ exp(r(t—1))] 13

*) It is assumed that the time value of money is continuously discounted for the convenience of abstraction

and exp(-rt) is used as a discount factor.




where, a . expansion cost incurred for a unit capacity is increased.

Equation (13 is a function of X, only and the modified objective function can be rearranged as follows

ZZ[C,,;-aD,Iexp(-r)]X,ﬂ+ZZ/I{;’ [Coit @ Deexp(rt) (eaxp(N—DIX+ Z ZLCrtaDuexp(r(T -1) ] X, b

As long as the additional expansion cost is proportional to the amount shipped from each facility, the additional
expansion cost considered changes only the coefficients of X,/s in the objective function. In this study, we ignore

the additional expansion cost.

3. COMPUTATION OF LOWER BOUNDS
3.1 SOLUTION PROCEDURE OF [LR1]
The problem [LR1] can be decomposed into T independent subproblems according to the time period (.

Let [LRI] be the subproblem of time period { =k then it can be represented as follows *

[LRI]/ L1 = Min. EZ (C”/;+ U,/\,) X,,Lv 5
i
ST. 2Xu=1 wyje] 19)
X/kgo Vi€ I, ]E]

This [LRI], has the similar structure of an assignment problem and its optimal solution can be easily found

by simple additions and comparisons. The optimal solution of [LRI], L is as follows:

L/; = E (Cmv*]k_"’[],(,.*,/\) 7
J
where, i())* = Min. (C.+Up) ns

Therefore, computing L, for all k(keTT) and summing them, we can obtain the optimal solution value of
(LRI, L1* as follows :

L1* = Z[Z(C,(,‘/*,/+U,U:*,;>] i 19)

Loy

3.2 SOLUTION PROCEDURE OF [LR2]

We can decompose the problem [LR2] into m subproblems for each facility i. For some 7 = ¢, the subproblem
[LR2], can be represented as follows :

(LR2),  L2= Min Z[F(Y,~Y, D—ZU,Y,] 20)
ST Y[',,,*Y/,, =0 vtETYJ‘ @0
Y,=0or lvtelT
where, Y, =0
Considering all possible cases that the decision variables “Y,", “Y, 1", can take, we can evaluate the value
of the objective function as in Table 1. Thus if the facility ¢ is set up in time period £ the optimal value
of [LR2], is



Fy - SU A4S (—3U
J kot d i
;
= ﬁ:// "Z (E [/74[,;‘-) )
kot

Table 1. The Value of The Objective Function Coefficients of L2.

Decision Variable Coefficients of
Y., Yo s Objective Function
CASE 1 0 0 0
CASE 2 1 0 Fym=2U,?
CASE 3 1 1 _30,<0

and L, the optimal function value of [LR2], is

¢
L,=Minl0o, MinF,— X XU,] 23
ki

g

So the optimal solution of [LR2], L2* is

T
L2*= E [F.—Z= Z U,,,,] N
igin P

where, Iy, = the set of facilities whose optimal solution value of [LR2], is negative.
{(i)* = the optimal set up time of facility i having negative L,

Therefore, a lower bound of primal problem [P] is:

ZU) = L1*+ 12" {251

4. CONSTRUCTING UPPER BOUNDS FROM PRIMAL FEASIBLE SOLUTIONS
4.1 FINDING AN INITIAL UPPER BOUND

At the start, we must find an initial primal feasible solution of [P] for an initial upper bound. It can be
determined by the following simple steps.

STEP 1° Select i* satisfying the following condition.
¥ = Min. {F)} viel
STEP2° Get an initial upper bound by computing

23Cwit+Fow (26)
I
where, 23C;«; = the total producing and shipping cost

¢

Fix; = the total fixed-charge cost

4.2 COMPUTATION OF UPPER BOUNDS

L ——————— i B




Unless the values of the decision variables obtained from the Lagrangian dual problem satisfy the relaxed
constraints {3) of the primal problem, a feasible solution of the primal cannot be obtained readily. However,

in this study, even though the values of Xj; and Y, obtained by the Lagrangian relaxation do not satisfy the
relaxed constraint, we may heuristically find a primal feasible solution so long as more than one facility is

established(i. e. more than one Vi is 1). The heuristic feasible solution finding procedure is as follows :
First of all, let I, be the set of facilities whose Y; values are 1 as was determined in [LR2], then the primal
problem [P] can simply be expressed as [P] where ‘A’ contains the rest of the terms of [P].

[P] Min. X XXCaX;:+A @
FiEl s
S.T. g Xa=1vje] teTT @8
Xu=0 viel je] telT

In "A’, the Y;'s have the fixed value as was determined in [LR2], and the constraints (3), (4) of the primal
problem [P] are also satisfied accordingly. Since this simplified [P’] is in the same form as the Lagrangian
subproblem [LR1], the procedure of finding an optimal solution for [P"] is exactly same as that of [LRI].
So, the optimal solution value of [P'] is as follows ;

ZEEC,(;)-;:]+A (29)
t

where, i(j)* = W?(C,ﬂ)
If the optimal value of equation (29 is less than the existing upper bound, it replaces the existing upper
bound.

4.3 IMPROVEMENT OF UPPER BOUNDS

In this section, an efficient heuristic procedure that improves the Qrimal feasible solution (upper bounds)
is suggested. Here, two possible cases that can decrease the objective function value of the primal problem
is considered.

First is the case when the values of Yi's from [LR2] indicate a facility is set up and yet, is not utilized
immediately, the fixed charge cost addition is postponed until the moment that X; has the value of 1.

Second is the case that the facility is screened out during a certain time period when the cost reduction
due to delaying the set up time is greater than the shipping cost increase without it. The screening process
is carried out for each facilities set up by [LR2] in the order of the largest cost savings. Thus, unnecessary

facilities can be found if more facilities were open than required.

5. THE SUBGRADIENT OPTIMIZATION PROCEDURE
The objective of the subgradient optimization procedure is to find a better Lagrangian multiplier vector Uj
which improves the lower bound obtained from Lagrangian relaxation problem. The subgradient optimization

method is a brazen adaptation of the gradient method treated in non-linear programming, in which the gradient



is replaced by the subgradient [4].
In general, when an inital Lagrangian multiplier vector U is given, a series of a vector {* generated is as

follows 3
US' = Max. [0, U+ 4,(AX*—b)] 80)

where AX = b is the relaxed constraint of the Lagrangian relaxation.
In equation3), # is the positive stepsize and Uz 0.The stepsize t, is computed by the following formula

as was suggested by Fisher [4]

b= L - (UB=Z,(UNV/ 1 SII® 31

In the above formula, m is a constant(0<m.<2) and halved whenever the Lagrangian dual problem [LR]
has failed to increase in some prespecified number of iterations[8]. UB is an upper bound of the primal problem,
and I S| is any norm of subgradient vector S (in this study, we used the Euclidean norm). So

I Si?= X382 (32)

oyt

= X325 1) 33

[
Therefore, the improved Lagrangian multiplier vector "' is described as follows ;

Uit = Max. [0, Uy+4(X5— V9] B4)

In this study, we applied some stopping rules to enhance the computational efficiency of the algorithm. Practically,
however, there is no way of proving the optimality by this Lagrangian relaxation method as long as the positive
duality gap (UB—Z,(U") exists. In fact, when the size of the problem becomes larger, equating UB to Z,(U*)
is hardly expected. Therefore, it is hopeful to find a feasible solution close to an optimal value more rapidly
by making stopping rules appropriate to each problem. Stopping rules considered in this study is as follows :

(1) If all subgradient values X, —Y, are zero, it will stop.

(2) If (UB—LB)/LB <k, it will stop (generally, 0.005<k<005).

(3) If the best feasible solution is obtained repeatedly several times (in general, 5 times), it will stop.

(4) When it meets the prespecified iteration limit (in general, 100 times), it will stop.

(5) In case of m<0.0001, it will stop.

A flow chart for the proposed solution procedure is depicted in Figure 1.

6. COMPUTATIONAL RESULTS

The computational efficiency of our solution procedure proposed in this stuty is evaluated by solving example
problems. Eleven example problems(7 phase-in and 4 phase-out problems) of Roodman & Schwartz are solved
to see the effectiveness of the algorithm. The sizes of these examples considered are from 8X 15X5 to 15X 30X 8

(640—3720 variables). Throughout the solution procedure the maximum number of iterations were set to 30




times and the iteration stops if the best uppper bound repeats 5 times or the tolerance limit between UB
and LB (duality gap) is less than 0.05. And as initial input data, mis 2 and the discount rate used is 0.07.

In setting initial Lagrangian multiplier value, U,. two cases are considered.

CASE D U; =0 viel je telT
CASE 2) U, = Min. C, viel je] teTT

[ INITIAL INPUT DATA J
i

| FIND AN INITIAL UPPER BOUND J
)

YES

EXCEED
TTERATION LIMIT?

COMPUTE LB Z,(U") = (LRD+(LR2) ]

IS(P) FEASIBLE ?

I

COMPUTE UB : UPDATE UB IF POSSIBLE
(UB IMPROVEMENT PROCEDURE)

THE BEST
UB REPETITION
LIMIT?

YES

YES

SUBGRADIENT S! = X}, ~Y*

i UB—Zp{U")
STEP SIZE b =——————
S5Q

UPDATE U, '=Uy+t, - Sl
] ( stop )

Figure 1. A Flow Chart of the Solution Procedure.




The proposed Lagrangian relaxation procedure is programmed in FORTRAN IV and run on 16-bit personal
computer (SPC-3200). The computational results were compared with dual-based procedure of Van Roy &
Erlenkotter[16]and are summarized in Table 2. Figures in parentheses have been obtained by taking initial
Ui as in CASE 2. The proposed solution procedure was not so efficient as DUALOC of Van Roy & Erlenkotter.
DUALOC s a solution algorithm devised by Erlenkotter[ 3] for a special class of probelm such as the simple
plant location problem and has been extended to solve the dynamic plant location problem by Van Roy and
Erlenkotter. The solution scheme is centered around meeting the complementary slackness condition adjusting
dual variables efficiently at a time by dual ascent procedure. And a primal feasible solution is readily obtained
upon termination of dual ascent. For the completeness of the algorithm they added dual adjustment and branch
and bound procedure. Interested reader should read their paper.

For a time being it seems to be the most powerful and efficient solution algorithm for the class of problem.
It is because the DUALOC adjusts each component of dual variables with exact admissible step size exploiting
some special structure of the uncapacitated plant location problem, unlike the subgradient algorithm does on
the Lagrangian multipliers. If we take a close look of the proposed solution procedure, it very often finds optimal
solution within the first few iterations. It reveals that the updating rule of the subgradient method has poor

convergence rate.

Table 2. Computational Results

CPU TIME otal Iter.#
*Ex. **Size LagRel. [Dual— # of finding SOLUTION
No. (ixjxt)  Method [Based  [lter. opt. sol. UB LB |[(LB-LB)YLB
1 8X15X5 44 11 21 20 24372 23839 0.0223
(57) (25) (22) (23783) (0.0247)
2 8X30X5 63 11 14 1 39819 37931 0.0497
(69) (15) (2 (38044) | (0.0466)
3 12X30X5 85 48 14 1 38030 36342 0.0464
(66) (D (2 (22501) (0.6901)
4 12X30X8 204 72 17 1 49362 47299 0.0436
(107) (7 (2) (35273) (0.3994)
5 15X30X8 95 31 6 1 50054 42476 0.1784
(136) (7 (2 (39024) (0.2826)
6 12X20X5 53 39 13 1 27015 25767 0.0484
(86) (200 (3) (25821) (0.0462)
7 8X20X5 41 29 15 1 25437 24301 0.0467
(42) (15) (5) (24421) | (0.0416)
8 12X30X5 213 123 24 22 79893 76491 0.0444
(88) N (2) (57357) | (0.3382)




9 8X30X5 95 26 16 1 73473 70053 0.4882
(255) (30) 3 (54902) (0.3382)

10 8X30X5 100 41 21 10 62970 60275 0.0447
(183) (30) 3 (47962) (0.3129)

11 8X15X5 67 2 30 6 28733 0 -
(88) (30) (® (22606) | (02710

%) 1— 7. Phase-in problems
8—11 ® Phase-out problems

* %) i = The number of facility sites
j = The number of demand centers

t = The number of planning periods

7. CONCLUDING REMARKS

We have developed a solution procedure for a dynamic uncapacitated facility location problem that deals with
size, location, and time-phasing decisions for establishment of service facilities. The solution procedure can readily
be used to solve a problem that we would face when we try to establish a long-range investment planning
strategy for a public sector project where increasing service demands are dispersed in several locations.

The mathematical model for this problem was formulated by a mixed integer programming, Generally the
large scale mixed integer programming problem cannot be solved easily. However, Lagrangian relaxation method
overcomes this obstacle and offers an optimal solution with great ease in computation. We tried to solve the
Lagrangian dual problem. With careful use of its special problem structure, the Lagrangian dual problem is
decomposed into two subproblems which can be solved simply by enumeration. Primal feasible solution is obtained
from dual solutions by heuristics. And the subgradient optimization procedure is employed for the maximization
of the dual function.

The main purpose of the subgradient algorithm is to construct dual feasible solutions that come close to
maximizing Z,(I*). The largest found value Z,* is the lower bound of the objective function of the integer
program.

Immediately after the dual procedure, the generation of primal feasible solution is followed in order to reduce
the ever present “duality gap”. which is ultimately the amount of discrepency from the complementary slackness
condition for the relaxed equation (3).

However, the computational results show that our method finishes in no better CPU time than DUALOC
(dual based procedure for dynamic facility location) which has been known as the most powerful tool for this
kind of problems. It is because the subgradient method does not adjust each component of Lagrangian dual
vector with exact admissible step size as DUALOC does. Therefore, the subgradient method oscillates around
dual optimal solution resulting in slow convergence. Nontheless, the proposed solution algorithm found all the

optimal solutions. Besides, it is simple to understand and easy to execute.



In closing, we feel it is necessary to caution the reader not to infer from the computational results that
Lagrangian relaxation is an inappropriate way to solve the problem. It is rather the subgradient algorithm that
makes slow convergence. As long as a solution scheme that would find dual optimal step sizes faster, is utilized

the simple decomposition structure we implemented in this study can be useful.
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