• Title/Summary/Keyword: Dynamic Programming Application

Search Result 94, Processing Time 0.021 seconds

An Application of Dynamic Programming to the Selection of Optimal Production Lengths Based on the Minimum Cutting Loss (최소절단손실(最小切斷損失)에 의한 최적생산(最適生産)길이의 선정(選定)에 대한 동적계획법응용(動的計劃法應用))

  • Jo, Gyu-Gap
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.4 no.2
    • /
    • pp.77-81
    • /
    • 1978
  • The assortment problem with deterministic demand has been formulated so that a dynamic programming can be applied to find optimal production lengths that will minimize the sum of cutting losses. The original minimization problem can be reformulated as the maximization problem with a different objective function. This problem can be solved by the dynamic programming technique. A numerical example illustrates this approach. The ratio of computation amount of emumeration method to that of this dynamic programming is approximately n to 1.

  • PDF

Determination of Work Schedule Type by Dynamic Programming (동적계획모형을 이용한 근무형태 결정)

  • 김중순;안봉근;손달호
    • Korean Management Science Review
    • /
    • v.20 no.2
    • /
    • pp.33-43
    • /
    • 2003
  • In this paper we applied dynamic programming to determining work schedule type. In dynamic programming formulation, each day during a planning horizon represents a stage for which a decision is made. The alternatives are given by work schedule types that combine regular time, overtime, additional shift, and so on. In this case, their associated return function is labor cost. The state is defined as the amount of work time allocated to stage 1, stage 2,…, and current stage. A case study for a real manufacturing company was performed to apply dynamic programming to scheduling daily work hours during a week. The case study showed that total cost of our solution derived from dynamic programming decreased by about 6% as compared with the solution obtained from the previous method.

An Approach of Solving the Constrained Dynamic Programming - an Application to the Long-Term Car Rental Financing Problem

  • Park, Tae Joon;Kim, Hak-Jin;Kim, Jinhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.29-43
    • /
    • 2021
  • In this paper, a new approach to solve the constrained dynamic programming is proposed by using the constraint programming. While the conventional dynamic programming scheme has the state space augmented with states on constraints, this approach, without state augmentation, represents states of constraints as domains in a contraining programming solver. It has a hybrid computational mechanism in its computation by combining solving the Bellman equation in the dynamic programming framework and exploiting the propagation and inference methods of the constraint programming. In order to portray the differences of the two approaches, this paper solves a simple version of the long-term car rental financing problem. In the conventional scheme, data structures for state on constraints are designed, and a simple inference borrowed from the constraint programming is used to the reduction of violation of constraints because no inference risks failure of a solution. In the hybrid approach, the architecture of interface of the dynamic programming solution method and the constraint programming solution method is shown. It finally discusses the advantages of the proposed method with the conventional method.

COMMON FIXED POINTS FOR COMPATIBLE MAPPINGS OF TYPE (P) AND AN APPLICATION IN DYNAMIC PROGRAMMING

  • Liu, Zeqing;Guo, Zhenyu;Kang, Shin-Min;Shim, Soo-Hak
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.61-73
    • /
    • 2008
  • In this paper common fixed point theorems dealing with compatible mappings of type (P) are established. As a application, the existence and uniqueness of common solution for a system of functional equations arising in dynamic programming is given. The results presented in this paper improve, generalize and unify the corresponding results in this field.

  • PDF

A Track Scoring Function Development for Airborne Target Detection Using Dynamic Programming

  • Won, Dae-Yeon;Shim, Sang-Wook;Kim, Keum-Seong;Tahk, Min-Jea;Kim, Eung-Tai
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.99-105
    • /
    • 2012
  • Track-before-detect techniques based on dynamic programming have provided solutions for detecting targets from a sequence of images. In its application to airborne threat detection, dynamic programming solutions should take into account the distinguishable properties of objects in a collision course. This paper describes the development of a new track scoring function that accumulates scores for airborne targets in Bayesian framework. Numerical results show that the proposed scoring function has slightly better detection capabilities.

Optimal Seam-line Determination for the Image Mosaicking Using the Adaptive Cost Transform (적응 정합 값 변환을 이용한 영상 모자이크 과정에서의 최적 Seam-Line 결정)

  • CHON Jaechoon;KIM Hyongsuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.148-155
    • /
    • 2005
  • A seam-line determination algorithm is proposed to determine image border-line in mosaicing using the transformation of gray value differences and dynamic programming. Since visually good border-line is the one along which pixel differences are as small as possible, it can be determined in association with an optimal path finding algorithm. A well-known effective optimal path finding algorithm is the Dynamic Programming (DP). Direct application of the dynamic programming to the seam-line determination causes the distance effect, in which seam-line is affected by its length as well as the gray value difference. In this paper, an adaptive cost transform algorithm with which the distance effect is suppressed is proposed in order to utilize the dynamic programming on the transformed pixel difference space. Also, a figure of merit which is the summation of fixed number of the biggest pixel difference on the seam-line (SFBPD) is suggested as an evaluation measure of seamlines. The performance of the proposed algorithm has been tested in both quantitively and visually on various kinds of images.

Target Object Search Algorithm under Dynamic Programming in the Tree-Type Maze (Dynamic Programming을 적용한 트리구조 미로내의 목표물 탐색 알고리즘)

  • Lee Dong-Hoon;Yoon Han-Ul;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.626-631
    • /
    • 2005
  • This paper presents the target object search algorithm under dynamic programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved if the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using a real robot.

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

Technological Forecasting and Its Application to Military R&D Programming (기술예측 방법론 및 이의 군사연구계획에의 응용)

  • Lee Sang-Jin;Lee Jin-Ju
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.111-125
    • /
    • 1976
  • This paper is to explore technological forecasting methodologies and their application to military R&D programming. Among a number of forecasting methodologies, eight frequently used methods are explained. They are; Delphi method, analogy, growth curve, trend extrapolation, analytical model, breakthrough, normative method, and combined method. Due to the characteristic situation of a developing country, the application of technological forecasting to the Korean military R&D programming is limited. Therefore, only two forecasting methods such as Delphi and normative method are utilized in the development of a decision model for the military R&D programming. The model consists of a dynamic programming using decision tree model, which optimizes the total cost to equip a certain military item under a given range of risk during a given period. Some pitfalls in forecasting methodologies and of the model are discussed.

  • PDF

Application to Generation Expansion Planning of Evolutionary Programming (진화 프로그래밍의 전원개발계획에의 적용 연구)

  • Won, Jong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.4
    • /
    • pp.180-187
    • /
    • 2001
  • This paper proposes an efficient evolutionary programming algorithm for solving a generation expansion planning(GEP) problem known as a highly-nonlinear dynamic problem. Evolutionary programming(EP) is an optimization algorithm based on the simulated evolution (mutation, competition and selection). In this paper, new algorithm is presented to enhance the efficiency of the EP algorithm for solving the GEP problem. By a domain mapping procedure, yearly cumulative capacity vectors are transformed into one dummy vector, whose change can yield a kind of trend in the cost value. To validate the proposed approach, this algorithm is tested on two cases of expansion planning problems. Simulation results show that the proposed algorithm can provide successful results within a resonable computational time compared with conventional EP and dynamic programming.

  • PDF