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Abstract

Track-before-detect techniques based on dynamic programming have provided solutions for detecting targets from a sequence 

of images. In its application to airborne threat detection, dynamic programming solutions should take into account the 

distinguishable properties of objects in a collision course. This paper describes the development of a new track scoring function 

that accumulates scores for airborne targets in Bayesian framework. Numerical results show that the proposed scoring function 

has slightly better detection capabilities.
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1. Introduction

Sense and avoid is one of the most basic responsibilities 

for aircraft operations. Pilots who operate aircraft are always 

required to maintain a high level of situation awareness in 

order to avoid a mid-air collision. Increased traffic densities 

and large speed differentials in airspace can have high 

potentials for air collisions even in daylight and in visual flight 

rule conditions. Thus, an autonomous collision detection 

and avoidance capability is a critical capability for a variety 

of unmanned aerial vehicle applications in airspace. In order 

to aid pilots or autonomous flight computers much effort 

has been made in developing robust collision detection 

algorithms. Recent improvements in the field of image 

processing and computer vision have raised interest in the use 

of image sequences from passive optical sensors for detecting 

potential threats [1-5].

Most of the studies have been carried out by using a 

track-before-detect (TBD) technique and this technique, 

integrates the sensor data about a tentative target over time 

by combining target detection and estimation. Unlike other 

conventional detection techniques such as probabilistic data 

association (PDA) and multiple hypotheses testing (MHT), a 

signal is tracked before declaring it as a target. In the literature, 

TBD methods based on dynamic programming (DP) have 

been proposed for dim target detection and tracking in highly 

cluttered environments where the signal-to-ratio (SNR) is 

relatively low [1-6]. The DP-based TBD methods effectively 

integrate the observations along possible trajectories and 

those trajectories for which the tracking score exceeds a given 

threshold are returned as possible targets [6]. The DP solution 

proposed by Barniv is one of the first papers in the literature [1] 

that has provided a fundamental approach to detect and track 

dim moving targets simultaneously as registered in an image 

set. Arnold et al. [3] improved the existing solutions in terms 

of computational efficiency and performance against non-

Gaussian noise characteristics. The analysis of the DP-based 

TBD was carried out by using extreme value theory in [6]. On 

the other hand, Nichtern et al. [7] dealt with some practical 

issues on setting the parameters of dynamic programming 

solutions in order to maximize the tracking capability. 

Although, there have been efforts to solve the various 
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important TBD problems, the problem of developing track 

scoring functions has received less attention, particularly 

when it applies to airborne target detection on the flight 

path. As collision threats have a few geometric features from 

their relative dynamics, incorporating these features into 

track scoring functions is important to enhance the detection 

performance.

The fundamental technique presented in this paper is based 

on the DP solutions that were proposed in [1, 3]. However, 

our current work has led to some technical innovations in 

its application to the problem of airborne collision threat 

detection. In particular, a new track scoring function is 

proposed to improve the collision detection performance. 

This is done by reflecting two distinguishable properties of a 

non-maneuvering target in a collision course. First, a target 

on a near-collision course remains stationary in image view 

as collision occurs when the line-of-sight between aircrafts 

is maintained almost stationary. Second, the rate of image 

expansion for a collision course target is approximately 

inversely proportional to the time to collision [8]. As a result, 

the main problem of concern is in the development of a 

DP-based TBD technique that takes in to account these two 

properties for early airborne target detection.

This paper is organized as follows. In Section 2, the 

basic approach to DP-based TBD is described. Section 3 

illustrates the development and implementation of a track 

score function of a DP solution for airborne target detection. 

Section 4 presents the numerical results and its performance 

assessment of the proposed method. The final section 

summarizes the overall discussion.

2. �Dynamic Programming Solutions for Air-
borne Target Detection

The objective of airborne target detection is to determine 

the trajectories that are most likely to have originated from 

the actual threat by using the measured image sequence 

of K frames. Solutions for this problem should be able to 

provide high detection performance. Here, the size of threats 

can vary from sub-pixel to a few pixels in the presence of a 

background clutter. This section describes the outline of the 

DP algorithm and its application to solve TBD problem.

2.1 Overall procedure

The DP-based target detection algorithm has been divided 

into three steps. In the first step, the raw image sequence 

passes through pre-processing stages. It emphasizes the 

potential targets and provides a four-dimensional target 

intensity measurement set with the spatial and velocity 

resolution cells. Spatial resolution corresponds to the image 

sensor resolution. The velocity resolution depends on the 

design parameter which is related to a three-dimensional 

data processing stage. In this step, a close-minus-open filter 

which is one of the morphological filtering algorithms is 

employed to extract peak regions in images and to generate 

a non-negative output [9]. The second step is the DP-based 

target detection stage that operates on the unthresholded 

data set that is provided by the pre-processing step. Basically, 

the DP approach provides a single optimization procedure 

that includes both data association and track detection as it 

avoids a thresholding process. Moreover, it also preserves all 

the signal information in the raw image data. The DP-based 

TBD method presented hereafter is based on the approaches 

that are described in [1, 3]. The final decision on the target 

presence and position is made in the third step by evaluating 

the criteria for both threshold values and uniqueness of track 

histories over a certain length of image frames.

2.2 Target and Sensor Models

Target motion is modeled to be approximately linear 

over the image plane of an image sensor, with allowances 

for curvature, acceleration, and jitter. This model illustrates 

the target motion onto the image plane with the resultant 

target dynamics and it described two differential equations 

of motion as shown in Fig. 1. The target model is defined by a 

discrete-time state-space equation of the form,

(1)

Where, xk = [x, y, u, v]T
k is the target state vector at frame 

k. (x, y) ∈ [(1, 1), (L, L)] and (u, v) ∈ [(−M/2, −M/2), (M/2, 

M/2)] are the horizontal and vertical relative target positions 

and velocities in discrete image dimensions, respectively. It 

is assumed that the discrete states are uniformly sampled 

over their ranges. The target state innovations are modeled 

as zero-mean random processes of the form,
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Fig. 1. Coordinate system for the target and sensor models. The relative target motion is defined by a 

discrete-time state-space equation on the image plane. 

 

 

 

Fig. 1. �Coordinate system for the target and sensor models. The rela-
tive target motion is defined by a discrete-time state-space 
equation on the image plane.
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(2)

where ζxk
 and ζyk

 are the unpredictable target position 

transitions by sensor registration errors. u̇ and v̇ are the 

unknown target acceleration components. The process 

noises are zero-mean Gaussian white noises with unknown 

statistics. The state transition matrix, Fk and Gk are defined as 

follows by considering the problem of tracking a point target 

that moves with constant velocity in the image plane.

(3)

where ∆tk is the time interval between the (k − 1)th and the 

k th image frames.

The raw image data are pre-processed to suppress clutter 

signals prior to the dynamic programming stage. The three-

dimensional convolution filter is applied to brief image 

sequences for the extraction of the target’s expansion rate as 

well. Output from the image pre-processing step consists of 

discrete, four-dimensional matrices, Zk = {qk, rk}. qk and rk are 

the amplitude and the expansion rate measurements of the 

target, respectively. At time k, each pixel of the measurement 

is modeled as follows,

(4)

where hk
(i, j) is the contribution of the target on each pixel 

and it relies on the point spread function and the state. wk 

is an additive noise with known statistics and nk is a sample 

from a random noise process. The noise distributions of 

wk  and nk are generally independent and they are derived 

from different physical processes. As the rate of the target 

expansion is almost inversely proportional to the relative 

distance, qk can be defined as a state if the state vector 

includes three-dimensional positions.

2.3 Dynamic Programming Solution

As the target state is assumed as the Markov process, the 

result of each stage depends only on the results of the previous 

stage. The maximum possible value of the scoring function 

for collision threat is obtained by the inclusion of a sequence 

of intermediate functions that represent the maximum 

partial sum of the previous scoring functions. Based on the 

posterior odds formulation, the scoring function, s is defined 

as the logarithm of the ratio of posterior probabilities

(5)

where (xk, xk − 1, …, x1) is the target-present hypothesis for 

the specific target state sequence that enables in state xk at 

time index k. The alternative hypothesis is represented by, H0 

while Zk represents the observation set. In the form of a DP 

solution such a procedure can be represented by a recursive 

form by resembling the following equation.

(6)

In every successive DP processing stage both the 

maximizing value of xk − 1 and the corresponding maximum 

value hk − 1 are chosen. They are stored for each possible 

value of xk. The a posteriori event probabilities Pk|k(xk, xk − 1, 

…, x1|Zk) and Pk|k (H0|Zk) are applied to the track sequence 

and null-target hypotheses, respectively. By applying Bayes 

Theorem to both the numerator and denominator yields,

(7)

where Pk|k − 1 is the prior probability of the events at the 

processing state k conditioned on the measurements up 

to the previous state and p(zk | xk) and p(zk | H0) are the 

probability density functions of the observations in stage k 

conditioned on the target-hypothesis and null-hypothesis. 

The assumption of a first-order Markov model for the target 

state innovation implies that the state xk is statistically 

independent of the previous state xk − 1 for the given 

observations. Hence, the following recursive form is derived 

by applying the definition of conditional probability to the 

second term on the right-hand side of the equation (for 

derivation details refer to [3]).

(8)

It is usually quite reasonable to assume that given the 

true state x, the target amplitude is independent of the rate 

of the target expansion. The target amplitude of the point-

like target depends on the noise sources that are created by 

the change of weather such as clouds or lighting conditions. 
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On the other hand, the rate of expansion is a function of the 

relative distance between the target and own aircraft [5]. 

With this assumption, the second term on the right-hand 

side implies that

(9)

where p(qk | xk), p(qk | H0), p(rk | xk), and p(rk | H0) are 

the probability density functions of the two independent 

observations in stage k. Finally, the desired DP update 

equation is given by reinserting the logarithm and carrying 

out the maximization.

(10)

In the recursive update equation, the function hk(xk) can be 

interpreted as the score of the candidate track up to state xk.

2.4 Implementation of Dynamic Programming

In order to detect target expansion, a sub-window around 

each pixel was explored. The sub-image that corresponds to 

the window is convolved with a smoothing mask. This mask 

performs low-pass filtering for the output considered as the 

measure of target strength. This measurement is obtained in 

terms of the increase of the target strength and it is tracked 

over a number of stages. The mean rate of expansion was 

estimated by applying least squares to the target strength.

The probability density functions of the observations 

are based on the prior knowledge of amplitude and 

noise characteristics of potential collision threats. These 

distributions are also adaptively determined from the 

observation sequence. As the given measurement noise is 

additive, the likelihood ratio becomes,

(11)

(12)

where pt and pn denote the target and noise-only 

probability density functions, respectively. q̂ and r̂ are the 

anticipated target characteristics. In order to model the two 

output characteristics, a standard Gaussian distribution 

is developed, whereas the parameters of the distribution 

are empirically chosen from the data. Other various non-

Gaussian distributions can be used to more accurately reflect 

on the highly nonlinear characteristics of observations [3].

The transition cost function accounts for the probability of 

target maneuvers and the noise properties of optical sensors. 

The transition cost is derived from both a priori models for 

target maneuvers and the models for state resolution cell 

quantization and errors in image processing steps. The 

transition probability is a function of the absolute difference 

between the expected and actual state at state k. Here, the 

expected state xk|k − 1 is calculated from the given target model. 

Thus, the definition of the state transition cost function can 

be written as follows,

(13)

As the innovation of the target state is assumed to be 

independent in time and dimension, the transition costs are 

separable into the product of transition probabilities of each 

dimension. These transition probabilities are to be computed 

from the difference of the Gaussian error functions that are 

given by,

(14)

where ∆x is the difference between the current state 

and the predicted state, Erf is the Gaussian error function, 

 is the floor function, σx is the standard deviation of the 

target innovations in terms of resolution cells and xres is the 

resolution of the quantized states.

3. Numerical Results

A DP-based TBD method is based on the proposed track 

scoring function which is implemented and evaluated by 

using a synthetic image sequence. In order to carry out the 

trial our simulation study requires, the image sequence with 

100 frames and a frame size of 32 by 32 pixels at 10 frames per 

second. This is synthetically generated. The image sequence 

contains the simulation of a moving target that moves through 

a structured background. A motion effect is caused by jitter 

and an aperture effect from the optics is also added onto 

the overall sensor model. In this image sequence, a single 

artificial target with relatively bright amplitude appears at 

the 20th frame and it flies from the center to the lower right. 

The target gradually expanded from the point to the shape 

of a plus sign that is defined by the image intensity at each 

pixel position in order to emphasize the target detection 

capabilities for objects on a collision course.

The results of gray-scale morphological filtering are 
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Fig. 2. �Morphological image processing sequence for artificial image data (20th, 40th, and 60th frames for each column). (a)-(c) Raw input images. 
(d)-(f ) Close images. (g)-(i) Open images. (j)-(l) Close-minus-open images. A combination of the two operations extracts the peak regions in 
images.

17 

 

 
Fig. 2. Morphological image processing sequence for artificial image data (20th, 40th, and 60th 

frames for each column). (a)-(c) Raw input images. (d)-(f) Close images. (g)-(i) Open images. (j)-(l) 

Close-minus-open images. A combination of the two operations extracts the peak regions in images. 
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shown in Fig. 2 for the three chosen images. Figures 2.(a)-

(c) shows the raw input images from the image sequence. 

Figures 2.(d)-(f) show the results of closing and this tends to 

preserve small brighter than the background. Figures 2.(g)-

(i) show the results of an opening and this tends to remove 

the bright regions that are small in size. Overall image 

processing results are shown in Figs. 2.(j)-(l). They confirm 

that the CMO morphological filtering has removed large 

clutters such as clouds in the background in order to extract 

point-like targets.

The simulation parameters are given in Table 1. Figure 3 

shows the results of the DP algorithm. The displayed intensity 

value has been scaled to reflect the track scoring for each 

spatial resolution cell in the chosen velocity plane. The target 

appears as a bright area which moves near the center of the 

image in Figs. 3.(b)-(c). The increased signal strength reflects 

the consistent integration procedure by the DP-based TBD 

method. This increase in both the size and amplitude of the 

target is considered in the track scoring function.

Figure 4 shows a comparison of the track scoring functions 

by taking into account the two different observation sets. The 

18 

 

 

Fig. 3. The DP-TBD method applied on the image sequence with the proposed track scoring function: 

(a)-(c) Three frames from sequence (20th, 40th, and 60th frames). As the algorithm accumulates 

scores by evaluating the target's amplitude and expansion rate, the existence and the state of the target 

are revealed more clearly. 

Fig. 3. �The DP-TBD method applied on the image sequence with the proposed track scoring function: (a)-(c) Three frames from sequence (20th, 
40th, and 60th frames). As the algorithm accumulates scores by evaluating the target’s amplitude and expansion rate, the existence and the 
state of the target are revealed more clearly.
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Fig. 4. Comparison of two track scoring functions from different observation sets: the solid line is the 

result calculated from the two observations and the dotted line is that from the amplitude observation 

only. (a) Signal-to-noise ratio. (b) Detection errors between the true target positions and the estimated 

position of maximum scores. 
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result calculated from the two observations and the dotted line is that from the amplitude observation 

only. (a) Signal-to-noise ratio. (b) Detection errors between the true target positions and the estimated 

position of maximum scores. 

 

 

(a) (b)

Fig. 4. �Comparison of two track scoring functions from different observation sets: the solid line is the result calculated from the two observations 
and the dotted line is that from the amplitude observation only. (a) Signal-to-noise ratio. (b) Detection errors between the true target posi-
tions and the estimated position of maximum scores.

Table 1. Summary of the simulation parameters

DP-based TBD parameters Probability distribution 
parameters

u resolution: 1 pix/frame μq
t : 0.5

v resolution: 1 pix/frame σq
t : 0.15

Max. vertical velocity: ± 1 pix/frame μq
n : 0.2

Max. horizontal velocity: ± 1 pix/frame σq
n : 0.2

x search window: ± 3 pixels μr
t : 0.1 pix2/frame

y search window: ± 3 pixels σr
t : 0.08 pix2/frame

u search window: ± 1 pixels/frame μr
n : -0.1 pix2/frame

v search window: ± 1 pixels/frame σr
n : 0.1 pix2/frame
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first observation set provides both q and r observations to the 

DP module. The second observation set consists of only the 

target amplitude estimates. In each stage, the pixel that has 

the maximum value from DP-based track scoring functions 

is considered as a potential target without a decision step. As 

expected, Fig. 4.(a) indicates that the detection performance 

of the DP-based TBD method with the proposed track scoring 

function is slightly improved in terms of the SNR. The position 

error depicted in Fig. 4.(b) shows that it converges a number 

of frames that are advanced as two collision properties which 

are considered in the track scoring function.

4. Conclusion

In this paper, a track scoring function of DP-based TBD 

method is proposed to take account of the two distinguishable 

properties of airborne targets on a near-collision course. The 

findings from the numerical results indicate that the signal-

to-ratio with the modified track scoring function is slightly 

improved compared to the previous one. Further work 

is being undertaken and it includes the implementation 

of the DP-based TBD method applied for airborne target 

detection.
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