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ABSTRACT. In this paper common fixed point theorems dealing with compatible
mappings of type (P) are established. As a application, the existence and unique-
ness of common solution for a system of functional equations arising in dynamic
programming is given. The results presented in this paper improve, generalize
and unify the corresponding results in this field.
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1. Introduction

It is known that the concepts of compatible mappings and compatible map-
pings of type (P) are generalizations of commuting mappings and weekly com-
muting mappings and the concepts of compatible mappings and compatible
mappings of type (P) are equivalent under some conditions. There are a few re-
searchers including Chang [2,3], Hadzié [5], Jungck {6,7], Liu [10,11,12], Liu and
Kim {18], Pathak, Cho, Kang and Lee [19] and others, who proved some com-
mon fixed point theorems concerning the compatible mappings and compatible
mappings of type (P) and established the existence and uniqueness of solution
and common solutions for some classes of functional equations and systems of
functional equations arising in dynamic programming. For example, Pathak,
Cho, Kang and Lee [19] studied the existence of common fixed point for the
compatible mappings of type (P)

d(As, By) < ¢( max {d(S2,Ts), d(Ss, Az), d(Ty, By),

%[d(Sz, By) + d(Ty, 42)]})
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for all z,y € X. For more details, it is referred to [1-19)].

Inspired by the results in {1-19], in this paper we show that two common fixed
point theorems for the compatible mappings of type (P) dealing with contractive
mappings. As a application, we give the existence and uniqueness of common
solution for a system of functional equations arising in dynamic programming,
which improve and generalize the corresponding results in [1,2,10,15,19].

Let N denote the set of positive integers. Now we recall the following defini-
tions and propositions.

Definition 1.1. [7] Let (X, d) be a metricspace and S, T : X — X be mappings.
S and T are called to be compatible if lim d(STzn,TSz,) =0, where {zn }nen
is any sequence in X such that lim Sz, =limTz, = z for some z € X.

n—oo n—

Definition 1.2. [19] Let (X, d) be a metric space and §,T : X — X be map-
pings. S and T are called to be compatible of type (P) if lim d(SSzn, TTz,)
= 0, where {Z» }nen is any sequence in X such that lim Sz, = limTz, = z for

00 n

some z € X.

Proposition 1.1. [19] Let (X,d) be a metric space and S,T : X — X be
continuous mappings. Then S and T are compatible if and only if S and T are
compatible of type (P).

Proposition 1.2. [19] Let (X,d) be a metric space and S,T : X — X be
compatible mappings of type (P) and Szn, Tz, — z as n — oo for some z € X.
Then

(1) nli_)rr;o TTz, =Sz if S is continuous at z;

(2) lim SSz, =Tz if T is continuous at z;
n—00
(3) STz=TSz and Sz =Tz if S and T are continuous at z.

2. Common fixed point theorems

In this section, two common fixed point theorems dealing with compatible
mappings of type (P) in metric spaces are presented. Define

®={p:p:[0,4+00) — [0,+00) is a nondecreasing,

upper semicontinuous function and ¢(t) < ¢ for all ¢ > 0}.

Theorem 2.1. Let (X,d) be a complete metric space and A,B,S, T : X — X
be mappings. Suppose that S and T are continuous mappings such that
(a) there exists a sequence {Tn}nen satisfying

Txop—1 = Argn—o and Szo, = Bxy,y, Vne N; (21)
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(b) the pairs {A, S} and {B,T} are compatible of type (P),
(¢) d(Az, By) — min {d(Sz, By), d(Ty, Az), max{d(Sz, Az),d(Ty, By)}}

< go(max {d(Sz,Ty),d(Sz, A:c) d(Ty, By),
[ (Sz, By) + d(Ty, Az)], [d(Aac By) + d(Sz, Ty)), (2.2)

2
%[d(Aa:, By) + d(Ty, By)] })

DO = D]

[d(Arc, By) + d(Sz, Ax)],

for all z,y € X, where p € ®.
Then the sequence {yn}nen generated by

Yon—1 = TZon-1 = AZon-2 and Yon = STon = BTon-1, YREN (2.3)
converges to a unique point common fized point of A, B, S and T in X.

Proof. Define d, = d(yn,yn+1) for n € N. 1t follows from (2.2) that for each
neN

dant1 = d(ATan, Bxanys1) — min {d(Sz2n, Boan+1), d(TTon+1, A%2n),
max{d(Szon, ATsn), &(TT2n+1, BTon41)}}

{ (SZon, TTon+1), A(STon, AT2r), A(TT2n41, BTon+1),

A

[d(STan, Bxont1) + d(TTon+1, ATon)],
[d(A%2n, Bzani1) + d(Szon, TTont1)],
[d(Az2n, Bzont1) + d(Szan, ATon)],
[d(Azon, Bxont1) + d(TZ2n41, BTont1))] })

= {dZmd2m dans1, —[d Yo, Yon+2) + 0], [d2n+1 + dan),

—[d2n41 + d2n), [d2n+1 + d2n+1]})

1
2
1
2
1
2
1
2
1
2
< p(max{dyn, dany1 })
It is claimed that dony; < dop for all n € N. In fact, if dany1 > dop for some
n € N, then (2.4) ensures that dop+1 < @(dan+1) < dan+1, which is impossible.
Similarly, it can be shown that dgn 2 < dany for all n € N. Therefore, dp41 <
d, for all n € N. Since {dn}nen is a decreasing sequence, it converges to 0 as
n — 0.

In order to prove {yn}nen is a Cauchy sequence, it is sufficient to show that
{y2n}nen is a Cauchy sequence. Assume that {yan}nen is not a Cauchy sequence.
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It follows that for some €y > 0 and each even integer 2k, there exist even integers
2m(k) and 2n(k) such that 2m(k) > 2n(k) > k and d(yom(k), Yan(k)) > €o
Further, let 2m(k) denote the smallest even integer which satisfies 2m(k) >
2n(k) > k, d(Yam(k): Yon(k)) > €0 and d(Yam(k)-2) Yan(k)) < €o- It follows that

€0 < d(Yon(k), Yam(k)) < AY2n(k)s Yom(k)-2) + d2m(k)—2 + d2m(k)-1, YR EN,

which implies that
Jm d(yan(e), Yamk)) = €o- (2.5)

From (2.5) and the following inequalities:

|d(Y2n(k)> Yomk)-1) — A(Yan(k) Yom(r))| < damx)-1, VR EN,
|d(Y2n(k)+1> Yom(k)) — AW2n(r), Yomx))| < dongry, VR EN

and

|d(Y2n(ky+1: Y2mky—1) — A(¥on (k) Yomk))| < dam(k)-1 + dangry, VR EN,
it follows that

klim A(Yan (k) Yomk)-1) = klim A(Yan(ky+1» Yamik))
- i 2.6
= kll.nolo d(yzn(k)+17y2m(k)-—1) = €9p. ( )

By (2.2), (2.5) and (2.6), one derives that

d(Y2n (k) Yam(k))

< donky + d(AZan k), BTom(k)-1)

< dongry t+ <P(max {d(Swzn(k), Tzam(k)-1)s
d(SZan(kys AT2n(k))) AT Tam(k)-1) BTam(k)-1)»

1

3 [d(SZan(ky, BEam(k)-1) + AT Tamk)—1, ATan(ky)] s
1

3 [d(AZ2n (k) BTam(r)-1) + A(STan(kys TTom(k)-1)]
1

3 [d(Az20 (k) BTom(k)-1) + A(ST2n(k), ATan(k))]»

1

3 [d(AZ2n(k), BTam(k)-1) + AT Tom(k)-1, BTam(r)-1)] })
+ min {d(STan(ky, BTam(k)-1) AT T2m(k)-1, AT20(k))s

max{d(SZan(ky, AZ2n(k) ) AT Tam(ky -1 BTam(k)-1)}}
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< dong) + 90( max { A(Y2n (k) Yam(k)-1)s don(k) B2m(k)~1

1
3 [d(Y2n(k)> Yom(k)) + AW2m(k)-1, Yan(k)+1)]

1
2 [@(Van(ky+1, Vam(k)) + (Uan(k)> Yom@)-1)]

1
3 [d(Y2n(k)+1> Yamk)) + ong)]
1
5 [A(Y2n(k)+1> Yom(k)) + am(k)-1] })
+ min {d(Yon(k)s Yam(k))s A(¥am (k)11 Yan(k)+1)»
max{dan(k), dom(k)-1}}, Vn €N.
Let k — oo in the inequalities. It is easy to gain that &9 < ¢(eo) < &g, a con-

tradiction. Therefore {yn}nen is a Cauchy sequence. Hence {yn}nen converges
to a point z € X as n — oo by completeness of X. Thus the subsequences

{Azon-2}nen, {BTon-1}nen, {STon}nen and {Tx2n—1}nen of {¥n}nen also con-
verge to the point z as n — oo.

Since the pairs {4, S} and {B,T'} are compatible of type (P), it follows from
the continuity of S and T, (2.3) and Proposition 1.2 that

Tyzn — T2z, Byzn = BBzan-1 — Tz,
SYon—1 — Sz, Aysp-1 = AATyp—2 — Sz asn — oo. (27)
By (2.2) and (2.3), it is derived that
d(Ayon-1, Byzn)
= d(Ayzn—1, Byzn) — min {d(Sy2n-1, Byzn),
d(Ty2n, AYan—1), max{d(Syzn—1, Ay2n—1), d(TY2n, Byan)} }

max {d(syz‘n—h Tyzn)v d(SyZn—l s Aan-—l)a d(TyZna ByEn):

d(SyQ’n-_l, ByQ'n) + d(Tyva Ay?n—l)] ) (2'8)

<e

[

[d(Ayzn—-1, Byzn) + d(Syan-1,Ty2n)],

d(Ayan—1, Byan) + d(Syan-1, Ayon-1)],
(

[d(Ay2n—1, Byzn) + d(Ty2n, Byan)] })
From (2.3), (2.7), (2.8) and the upper semicontinuity of ¢, it follows that

d(Sz,Tz2) < (,o(ma,x{d(Sz,Tz),0,0, % [d S82,Tz)+d(Tz, Sz)],

[T SR O I N e N

—

%[d(Sz,Tz) +d(Sz,T2)],
< ¢(d(Sz,Tz)),

[d(S2,Tz) + 0], %[d(SzyT 2)+0]})

[ ]



66 Zeqing Liu, Zhenyu Guo, Shin Min Kang and Soo Hak Shim

which implies that Sz = Tz. Similarly, it can be shown that Sz = Bz and
Tz == Az. Therefore
Az=Bz=8z2=Tz. (2.9)

From (2.2) and (2.3) it follows that

d(Az2n, Bz) — min {d(S2n, Bz),d(Tz, Az,),
max{d(STon, AT2n),d(Tz, Bz)}}

<y ( max {d(szn, Tz),d(Szon, Azan),d(Tz, Bz),

[d(SIL‘Zn, BZ) + d(TZ, Aa:Zn)] y % [d(A.’Egn, Bz) + d(swzn, Tz)],

N B2

[d(A2n, Bz) + d(Szan, Az2n)], % [d(Az2n, B2) + d(Tz, B2)] }).

Let n — oo. The above inequality yields that
d(z, Bz) — min {d(z, Bz),d(Tz, z), max{d(z, z), d(Tz, Bz)} }
< ¢( max{d(z,Tz),d(z, 2),d(Tz, Bz),

[d(z B2) + d(Tz, 2), 1 [dlz, B2) + d(z,T2)),
1
3

—

[d(z Bz) +d(z,2)],
= ¢(d(z, Bz)),

[ (z,Bz) +d(Tz,Bz)]})

which implies that z = Bz. Thus 2 = Az = Bz = Sz = Tz. Suppose that
w € X is another common fixed point of A, B,S and T different from z. It
follows from (2.2) that

d(Az, Bw) — min {d(Sz, Bw),d(Tw, Az), max{d(Sz, Az), d(Tw, Bw)}}
(max {d(Sz Tw), d(Sz, Az) d(Tw, Bw),
—;—[d(S’z Buw) + d(Tw, Az)), [d(Az Buw) + d(Sz,Tw)),
—;—[d(Az Bw) + d(Sz, Az)], [d(Az,Bw) +d(Tw, Bw)]})
= ¢(d(z,w)),

which implies that z = w. Therefore, 2 is the unique common fixed point of
A,B,S and T. The proof is completed. 0
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Theorem 2.2. Let (X,d) be a complete metric space and A,B,8,T : X — X
be mappings. Suppose that S and T are continuous mappings satisfying (b) and
(¢) in Theorem 2.1 and (d) A(X) C T(X) and B(X) C S(X). Then A,B,S
and T have a unigue common fized point in X.

Proof. Let zo be any point in X. Since A(X) C T(X) and B(X) C S(X), one
can choose a sequence {Zn}nen in X such that Szo, = Bro,-1 and Txgn-) =
Azg,—9 for each n € N. Thus Theorem 2.2 follows from Theorem 2.1. The proof
is completed. {J

Remark 2.1. Theorem 2.2 improves and generalizes Theorem 1 of Chang (2],
Theorem 2.1 of Liu [10] and Theorem 3.1 of Pathak, Cho, Kang and Lee [19].

3. An application in dynamic programming

In this section, let R = (—o0,4+00), (X, || - ||) and (Y,|| - ||') be real Banach
spaces, S C X be the state space, and D C Y be the decision space. B(S)
denotes the set of all bounded real-value functions on S and d(f, g) = sup{|f(z)—
g(z)| : z € S}. It is clear that (B(S),d) is a complete metric space.

It is well know that the existence and uniqueness problems of solutions of
various functional equations arising in dynamic programming are of both theo-
retical and practical interest. In the past 20 years or so, many authors, including
Bhakta and Mitra [1], Chang [3], Kang, Guan, Liu and Shim [8], Liu {10,11,12],
Liu and Ume [13], Liu, Agarwal and Kang [14], Liu and Kang [15], Liu, Ume
and Kang [16], Liu, Xu, Ume and Kang [17], Liu and Kim [18] and Pathak,
Cho, Kang and Lee [19] and others, by using various fixed point, common fixed
point and coincidence point theorems, studied and investigated the existence or
uniqueness of solutions, common solutions or coincidence solutions for several
classes of functional equations and systems of functional equations arising in
dynamic programming. For example, in 1984, Bhakta and Mitra [1] established
an existence and uniqueness of solution for the following functional equation

f(z) = sup {r(z,y) + f(c(z,y))}, Vz€S.
yeD

In 1995, Pathak, Cho, Kang and Lee [19] investigated an existence and unique-
ness of common solution for the following system of functional equations

f,(.’l:) = sup Hi(zv Y, f,(T(iB, y)))1
yeD

gi(z) = sup Fi(z,y,9:(T(z,y))), VzreS,ie{l,23,4}
yeD
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In 1999, Liu [10] obtained the existence and uniqueness of common solution for
the following system of functional equations

fz(ﬂi) = slelg {u(z,y) + Hi(wyy,fi(T(za y)))}’ Vz € sz € {1)2v3’4}

In 2001, Liu [12] gained the existence and uniqueness of nonnegative solution for
the following functional equation

flz) = yig{) max {p(z,y) + fla(z,v))}, VzeS.

In 2003, Liu and Ume [13] presented some sufficient conditions which ensure the
existence and uniqueness of solution for the following functional equation

f(z) = optyen{ulp(z,y) + f(a(z,9))]+v-optyep{a(z,y), fb(z,)}}, VreS,
where u and v are nonnegative constants with u+ v = 1. In 2006, Liu and Kang
[15] studied the following functional equation
f(@) = optyep{u(z,y) max{p(z,y), f(a(z,y))}
+ v(z,y) min{g(z,y), f (b(z, y))}
+w(@, (@) + flelzy)l}, VzeSs,

where opt denotes sup or inf. The above works motive us to investigate the
following system of functional equations arising in dynamic programming:
fi(z) = optyep{u(z, y) max{p(z,y), Hi(z,y, fia(z,y)))}
+ v(=, y) min{q(z,y), Hi(z,y, fi(b(z,y)))}
+w(z,y)r(z,y) + Hi(z, y, file(z, )]} + k=),
vz e S,i€{1,2,3,4},

(3.1)

where opt denotes sup or inf, z and y denote the state and decision vectors,
respectively, a,b, ¢ : SxD — S denote the transformations of the processes, fi(z)
denote the optimal return function with the initial state z and H; : SXxDxR — R
for i € {1,2,3,4}, u,v,w,p,q,7: S x D — R and k € B(S).

The purpose of this section is to establish the existence and uniqueness of
common solution for the system of functional equations (3.1), by using Theorem
2.2.

Lemma 3.1 {13]. Let a,b,c,d be in R. Then
|opt{a, b} — opt{c,d}| < max {|a —c|,|b—d|}.
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Theorem 3.1. Suppose that the following conditions hold:
(a) k € B(S), p,q,r and H; are bounded for i € {1,2,3,4}, and u,v,w are
nonnegative and u(z,y) + v(z,y) + w(z,y) <1 for all (z,y) € S x D;
(b) [Hi(z,y,9(t)) — Ha(z, y, h(1))|
<y max{d(Aag,Am),d(Asg,Alg) d(Aqh, Azh),

DN = TN o~

[d(Asg»Azh) +d(Agh, Avg)], [d(Alg,Azh) + d(Aag, Ash)],

d(Arg, Ash) + d(Asg, Arg)], 5 [d(Arg, Aah) + d(Aeh, Ash)] })
+ min {d(Asg, Azh), (A4h,A1g),max{d(A3g, A1g),d(Ash, A2h)}}

for all (z,y) € S x D,g,h € B(S) and t € S, where ¢ € ® and the mappings A;
are defined as follows:

Azg(w) = optyGD{u(xa y) ma’x{p(m»y))Hi(zayvg(a(x7 y)))}
+ U(Iyy) min{Q(x’y)’Hi(z Y, g(b( y)))}
+w(z,y)[r(2,y) + Hi(z,y, 9(c(z,9)))]} + k(z)

for all (g,z) € B(S) x S, 1€ {1,2,3,4};
(c) A1(B(S)) € Aa(B(S)) and A2(B(S)) C As(B(S5));
(d) For any sequence {hn}nen C B(S) and h € B(S),

lim suplh () —h(z)| =0= lim sup|A hn(z) — Aih(z)| =0, i€ {34}

(e) For any sequence {hn}nen C B(S), if there erists h € B(S) such that

lim sup|A;hn(z) — h(z)| = lim sup|Aitahn(z) — h(z)| =0, i€ {1,2},

then
lim sup |Ais2Aisohn(z) — AiAihn(2)] =0, i€{1,2}.

n-—00 TE

Then the system of functional equations (3.1) has a unique common solution in

B(S).

Proof. 1t follows from (a)-(e) that A;, Az, A3 and Ay are self mappings of B(S),
As and Ay are continuous, and the pairs of mappings {A;, Ai12} are compatible
of type of (P) for i € {1,2}. Suppose that opt = sup. For any g,h € B(S),z € S
and € > 0, there exist s,¢t € D such that

Ag(z) < u(z, s) max{p(z, 5), H1(z, 5, g(a(z, 5)))}
+ v(x, s) min{q(z, s), Hi(z, s 9(5( s} (3.2)
+ w(z, 8)[r(z, ) + Hi(z, s, g(c(x, s)))] + k(z)
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24 poh(z) < u(z, 1) max{p(z, ), Ha(z, 1, ha(z, 1))))
+ v(z, t) min{q(z,t), H2(x,t, h(b(z,1)))}
+ w(z, t)[r(z,t) + Ha(z,t, h(c(z,1)))] + k(z) + €.
Obviously,
A1g(z) 2 u(z, t) max{p(z,t), Hi(z,1, g(a(z,1)))}
+ v(z,t) min{q(z, t), Hi(z,t, g(b(z,t)))}
+w(z, t)[r(z,t) + Hi(z,t,9(c(x, )] + k(z)
and

Ash(z) > u(z, s) max{p(z, s), Ha(z, s, h(a(z, s)))}
+ ’U(.’E, S) min{Q(x! S)v HZ(:E7 8, h(b(xv S)))}
+ ’U)(.’L‘, S)['I'((L', S) + HZ(Z" S, h(C(.’E, 5)))] + k(x)

In light of (3.2), (3.5), (b) and Lemma 3.1, it is deduced that

Aig(z) — Axh(z)
< u(z, s)[max{p(:v, s), Hi(z, s, g(a(z, s)))}
— max{p(z, s), Hz2(z, 5, h(a(z, 5)))}]
+v(z, s)[ min{g(z, s), H1(z, s, g(b(x, 5)))}
— min{q(z, 8), Ha(z, s, h(b(z, s)))}]
+w(z, s)[Hi(z, s, 9(c(z, s))) — Ha(z, s, h(c(z, s)))] + ¢
< u(z, s) max {|p(z, s) — p(z, 5)|, | Hi (=, 5, g(a(z, )))
— Hy(z, s, h(a(, 5)))|} + v(z, s) max {|q(z, 5) — q(z, 5),
|Hi(,s,9(b(z,s))) — Ha(z, s, h(b(z, 5)))|}
+ w(z, s)|H1 (z,s,g(c(x,s))) — Ha(w, s, h(c(z, s)))| +e
< (u(z,s) + v(z, 8) + w(z, s)) max {|Hy(z, s, g(alz, 5)))
~ Ha(z, 5, h(a(@, )|, |1 (x5, 9(0(, 9))) — Halz, 5, h(o(x, )],
|Hi(z,5,9(c(, 9))) — Ha(a, s, h(c(z, )|} +¢
< 90( max {d(Aag, Ash),d(Azg, A1g),d(Ash, Azh),

1 1
-2— [d(Agg, Azh) + d(A4h, Alg)], -2- [d(Alg, Azh) + d(Agg, A4h)] s

3 [d(A1g, Aoh) + d(Asg, Arg)], 5 [d(rg, Ash) + d(Ash, Aah)]})

+ min {d(Asg, Azh), d(Ash, A1g),max{d(Asg, A1g),d(Ash, Ash)}}
+e.

(3.3)

(3.4)

(3.5)

(3.6)
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Similarly, (3.3), (3.4), (b) and Lemma 3.1 yield that

A1g(z) — Azh(z)
> u(z,t)[ max{p(z,t), Ha(z,t 9( a(z,1)))}
— max{p(z,t), H1(z,t, h(a(z,1)))}]
+ v(z, t)[mm{q z,t), Ha(z,t g( (z,t)))}
— min{g(z, t), Hi(z,t, h(b(z,t)))}]
+ w(z, t) [Hg(:v, t,g(c(z,t)) — Hi{z, t,h(c(:v,t)))] —€
> ~u(z,t) max {|p(z,t) — p(z,t)|, |H1 (2, , g(a(z, 1))
~ Ha(z,t, h{a(z, )|} — v(z,t) max {|g(z,t) - g(z, 1),
[ H(z,t,9(b(z, 1)) ~ Ha(z, 1, h(b(z,1)))|}
—w(z, t)|Hi(x,t, g(c(z, 1)) — Ha(z,t, h(c(z,1))| — € (3.7)
> —(u(z,t) + v(z, t) + w(z, 1)) max {|H1(z,t, g(a(z, t)))
— Hy(z, ¢, h(a(z, t)))|7 IHl (z,t,9(b(z,1))) — Ha(x,t, h(b(z, t)))i,
|H1(z,1, g(c(x, 1)) — Ha(z, ¢, hc(z, )|} — €
> —<P( {d(Asg, Aqh), d(Asg, A19) d(Aqh, A2R),
[ (Asg, A2h) + d(Ash, A19)], {d(Alg, Azh) + d(Asg, Ash)],

{ (A19, Azh) + d(Asg, A1g)], [d(Algquh) + d(Ash, Azh)]})

— mm{d(Agg,Azh) d(A4h Alg),max{d(Agg, Alg) d(A4h Azh)}}
—£&.

It follows from (3.6) and (3.7) that

d(A1g, A2h)
= sup |A1g(z) — Ash(z)|
z€S

< tp(ma.x{d(Agg, Agh), d(Asg, Arg), d(Ash, Ash),
1 1
5 [d(Asg, Ash) + d(Ash, Arg)], 5 [d(Arg, Azh) + d(Asg, Ash)],  (B8)

% [d(Axg, Azh) + d(Asg, Arg)], % [d(A1g, Azh) + d(Ash, Azh)] })

+ min {d(Azsg, Ash), d(Ash, A1g), max{d(Asg, A19), d(Ash, A2h)}}
+ €.
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Thus (3.8) implies that

d(Alg, Azh) — min {d(Asg, Agh), d(A4h, Alg),
max{d(Agg, Alg),d(A4h, Agh)}}
< o max {d(4sg, Aeh), d(4sg, Arg), d(Ash, A2h),

(3.9)
1 1

[d(A3g, AQh’) + d(A4ha Alg)] ’ [d(Alg’ Ay h) + d(A391 A4h)] )

[d(A1g, A2h) + d(Asg, A19)], 5 [A(Arg, Ach) +d(Ash, Aoh)] }).

[T ]
N — ol

Suppose that opt = inf. Similarly, (3.9) holds also. It follows immediately
from Theorem 2.2 that A;, A, A3 and A4 have a unique common fixed point
z € B(S), that is, z is a unique common solution of the functional equations

(3.

1). The proof is completed. a

Remak 3.1. Theorem 3.1 extends and improves Theorem 2.4 in [1], Theorem
2.1 in [15] and Theorem 5.1 in [19].

10.
11.
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