가압경수로형 원자력발전소 수위제어시스템과 특히 저출력시 수위제어상의 문제점들이 분석 및 고찰되었으며 저출력으로 운전시의 여러 과도특성에서도 안정된 제어를 하고 급수펌프고장과 같은 큰 수위변동 발생시에는 신속한 수위응답을 얻기 위한 방법이 주로 연구되었다. 제어기의 기본 알고리즘으로 퍼지제어기법을 적용하였으며 여기에 필요한 제어규칙 및 알고리즘은 운전원의 지식과 한국원자력연구소에 설치된 교육훈련용 모의제어반에서의 수동운전경험을 바탕으로 설정되었다. 실제 시스템 구현관점에서 제어변수 및 적용규칙은 보다 간편한 튜닝과 입출력변수간의 영향을 고려하여 세워졌다. 저유량일 때 측정이 불량한 유량신호에 대해, 중기발생기를 압력제어모드로 운전할 때에는 유량차의 퍼지변수로서 우회급수밸브의 개도를 이용한 대체정보를 채용하였으며 수위오차의 크기에 따라 유량차의 소속함수를 달리하는 동적인 튜닝방법을 사용하였다. 또한 우회급수와 주급수밸브간 간단한 전환알고리즘의 적용으로 밸브절환시의 수위요동을 억제하고자 하였다. 시뮬레이션 결과 저출력구간에서 원자로출력변동에 대해 기존에 설치된 방법보다 안정된 제어를 하고 동적 튜닝의 적용으로 미세제어동작과 수위오차가 큰 영역의 제어에 대해 신속한 응답과 함께 제어성능이 개선되었음을 보였다.
본 연구는 Daganzo가 돌발상황 검지를 위해 1997년에 제안한 삼연속 검지기 단순화 해법을 통계적 모형으로 구현하고 이에 대한 통계적 적합성 검증을 목적으로 한다. 본 연구는 삼연속 검지기 단순화 해법의 계산과정을 정리하였으며, 이를 통계 프로그래밍을 활용해 구현하였다. 먼저 진출입부가 존재하지 않는 고속도로 본선의 검지기 자료를 활용하여 본 해법을 적용하였다. 그리고 삼연속 검지기 단순화 해법의 통계적 검정을 위해 충격파에 의한 교통량의 동적 변화를 반영하는 30초 단위 누적교통량을 돌발상황 교통류와 정상 교통류 각각에 대해 추정하고, 실측 누적교통량과의 오차를 통계적으로 비교하였다. 오차검정 결과 돌발상황 검지기법을 통한 누적교통량 추정치는 통계적으로 실측치와 적합성이 높게 나타났으며, 오차 값의 유의성은 사고로 인한 돌발상황 교통류가 정상 교통류에 비해 분산 및 평균이 이질적인 것으로 나타났다. 본 연구는 기존 Newell, Daganzo의 단순화 교통류 모형의 이론적 연구를 돌발상황 검지로 응용 발전시킨 연구이며, 나아가 다양한 도로조건과 돌발상황 유형에서의 실험을 통한 모형 개선을 향후 과제로 한다.
본 연구는 금융위기 이후 새로운 질서로 부상되고 있는 '뉴 노멀'시대하 거시적 관점에서 한국기업의 R&D투자가 한국의 무역에 미치는 영향을 장 단기적 측면에서 실증적으로 규명하고자 하였다. 먼저 뉴노멀시대의 특징과 기업의 R&D투자현황을 분석한 다음, 기업의 R&D투자가 무역에 미치는 영향을 분석하였다. 이를 위해 시계열 자료인 무역량 변수들의 안정성 검정을 위하여 단위근 검정과 공적분 검정을 실시하였다. 또한 R&D투자의 변동성이 무역량 변수들에 미치는 동태적 영향을 보기 위해 백터오차수정 모형에 기초한 충격반응 및 분산분해를 실시하였다. 분석결과 수출, 수입, 수출/수입, R&D지출 모두 장기적으로 안정적인 공적분관계에 있는 것으로 나타났다. 인과관계 검정에서는 기업의 R&D 지출이 여타 변수에 대하여 단기와 장기 모두 일방적인 인과관계가 존재하는 것으로 나타났다. 충격반응함수 분석에서는 기업의 R&D지출의 충격에 대하여 무역량 모두 정(+)의 영향을 받으며 특히 수입보다는 수출부문에 더 큰 영향을 받으면서 장기간에 걸쳐 안정적인 추세로 수렴되었다. 예측오차의 분산분해의 결과는 기업의 R&D지출의 변동성이 무역량 변수들의 분산에 상당한 영향을 미치는 것으로 나타났다.
구조물의 최적 설계는 유한요소해석과 그것을 상용할 수 있는 컴퓨터 기술의 진보와 함께 발전해 오고 있다. 특히 위상 최적설계는 제한 조건들을 만족하는 구조물의 형상뿐만 아니라 최적 위상을 산출할 수 있다는 점에서 최근들어 많이 사용되고 있다. 일반적으로 유한요소해석은 영계수나 프와송 비와 같은 구조물의 재료특성 계수와 작용 하중 같은 변수들의 확정된 값을 가정하여 사용하나, 실제적으로 이러한 값들은 외부 환경의 영향이나 제조과정의 에러 등으로 인한 불확실성을 가진다. 따라서 정적 또는 동적인 구조응답 해석에서 다른 추이를 보일지도 모르며, 이는 구조물의 최적설계에도 영향을 미칠 수 있다. 본 논문에서는 구조물의 정적응답 해석에 대해 불확실성을 고려하는 간격 유한요소방법을 이용하여 구조물의 위상최적설계를 수행하고 그 해법을 제시하였다. 구조물의 최적설계 결과는 이전에 사용되었던 결과와 비교를 통하여 그 타당성을 입증하였다. 본 해석방법은 기존의 밀도분포법과 유한요소해석에 의한 위상설계와 비교하여 간단한 방법으로 서 선형 탄성 구조 응답의 불확실성을 고려하는 대체적인 구조물의 위상 최적결과를 예측할 수 있다.
The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.
본 논문에서는 갈릴레오 수신기 구조의 요구사항을 검토한 후 시뮬레이션을 통해 RF 성능 파라미터들이 갈릴레오 수신기 성능에 어떠한 영향을 주는지 알아보았다. 먼저 갈릴레오 시스템의 일반사항과 갈릴레오 수신기의 구조 및 특성에 대해 고찰하였고, 갈릴레오 수신기의 성능 분석을 위해 에질런트사의 ADS(Advanced Design System)를 이용하여 15 % EVM에 상응하는 16 dB C/N의 갈릴레오 수신기 성능 요구 규격에 초점을 맞춰 갈릴레오 수신기를 설계하였다. AGC(Automatic Gain Control) 동작을 확인하기 위해 수신 파워에 따른 출력 IF의 변화량을 확인하였으며, 일정한 IF 출력을 통해 정상적인 AGC 동작을 확인하였다. 수신기 입력 파워에 의한 성능 분석과 수신기 국부 발진기의 위상 잡음 변경에 따른 성능 열화 분석을 통해 -127 dBm의 입력 파워에서 EVM(Error Vector Magnitude) 변화를 알아보았다. 또한 AGC의 이득 범위(-2.5 dB ~ +42.5 dB)에 의해 결정된 -92 dBm ~ -139 dBm의 입력 파워에서 ADC(Analog to Digital Converter)의 비트 변경에 따른 성능 분석을 하였으며, LO의 위상 잡음이 감소하고 ADC의 비트가 증가함에 따라 EVM이 향상 됨을 알 수 있었다.
The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.
척추 및 보행질환 등에서 재활과 교정을 위하여 정형외과 및 가정 등에서는 견인운동치료기를 주로 사용하고 있다. 하지만 견인운동치료기를 사용함에 있어 간혹 무리하게 사용함에 따라 인체에 문제점이 발생하고 있다. 지속적인 견인력 작용을 이용한 치료방법에 견인운동치료기를 이용하는데, 이 때 작용하는 견인력을 측정하여 운동 시간을 조절할 필요가 있다. 그러나 현재 출시되고 있는 제품에는 견인력을 측정하는 센서가 대부분이 장착되어 있지 않고 있다. 그래서 스트레인 게이지를 이용한 견인측정센서, 출력신호로서의 변환을 위한 증폭기 및 성능 검증을 위하여 측정용 실험 장치를 설계 제작하고, 이를 이용하여 견인측정센서를 실험 하였다. 견인 부하에 따른 견인측정센서의 전기적 반응치를 측정하고 분석 결과, 캘리브레이션을 통하여 센서는 선형적인 출력을 보였고 환자의 움직임 여부에 관계없이 일정하게 견인측정센서의 반응이 나타남을 알 수가 있었다. 정적인 상태에서의 실험에서 최대 에러율이 약 1%이내이고, 동적인 실험에서 평균 에러율이 약 0.7%로 나타났다. 온도 변화에 따른 견인측정센서의 최대 출력치 변화량(output variation)이 약 0.3%이므로 견인 측정용 센서로 사용 가능하다고 판단된다.
최근에 수문시계열로부터 저차원의 비선형 거동을 재구성하고자 하는 연구가 활발히 진행되고 있다. 이러한 관점에서 본 연구에서는 Support Vector Machine(SVM)을 이용하여 우수한 상태-공간 재구성 능력을 갖는 비선형 예측모형을 구성하여 Great Salt Lake(GSL) Volume에 적용하였다. SVM은 Kernel 함수로부터 유도된 고차원의 특성공간 안에서 선형함수의 가상공간을 이용하는 Machine Learning 방법론이다. 또한 SVM은 훈련자료로부터 얻어지는 평균제곱오차가 아닌 일반화된 오차를 최소화함으로써 상대적으로 기존 방법에 비해 적은 수의 매개변수와 과적합(over fitting)을 피하면서 비선형 함수의 최적화가 가능하다. 본 연구에서 제시한 SVM 회귀분석의 적용성은 미국의 GSL의 2주 간격 Volume을 대상으로 검토하였다. SVM을 이용한 비선형 예측모형은 GSL Volume의 2주(1-Step), 8주(4-Step)와 반복예측(Iterated Prediction, 121-Step)까지 적용되었다. 본 연구에서는 극치사상 즉, 급격한 감소 및 증가 구간을 예측하는데 있어서 훈련구간과 예측구간을 구분하여 모형의 신뢰성을 평가하였다. 예측결과SVM은 훈련자료로부터 적은 수의 관측치를 이용하여 동역학적 거동을 추출할 수 있었으며 실제 관측자료와 거의 유사한 예측이 가능함을 통계적 지표로 확인할 수 있었다. 따라서 비선형 수문시계열의 단기 예측을 위한 모형으로 적용이 가능할 것으로 판단된다.
본 논문에서는 기저 스크리닝 기반 크리깅 모델(BSKM: Basis Screening based Kriging Model) 생성의 정확도를 높이기 위해 페널티를 적용한 최대 우도 평가 방법(PMLE : Penalized Maximum Likelihood Estimation)에 대해서 소개한다. BSKM에서 사용하는 기저함수의 최대 차수와 종류는 그 중요도에 따라서 결정하게 되며, 이때 중요도의 지표는 기저함수에 대한 교차 검증 오차(CVE : Cross Validation Error)로 택한다. 크리깅 모델(KM : Kriging Model) 구성시 최적의 기저함수 조합은 우선 최대 기저함수 차수를 선택하고 개별 기저함수의 중요도를 평가를 하게 된다. 최적 기저함수 조합은 크리깅 모델의 CVE가 최소가 될 때까지 개별 기저함수의 중요도가 높은 순으로 기저함수를 하나씩 추가하며 찾는다. 이 과정에서 KM은 반복적으로 생성해야 하며, 동시에 데이터 사이의 상관관계를 나타내는 하이퍼 매개변수(Hyper-parameters)도 최대 우도 평가방법을 통해 계산하여야 한다. 하이퍼 매개변수의 값에 따라 선택되는 최적의 기저함수 조합이 달라지기 때문에 KM의 정확도에 막대한 영향을 미치게 된다. 정확한 하이퍼 매개변수를 계산하기 위해서 PMLE 방법을 적용하였으며, Branin-Hoo 함수 문제에 적용하여 BSKM 의 정확성이 개선될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.