References
- 김형수, 최시중, 김중훈(1998) DVS 알고리즘을 이용한 일 유량 자료의 예측, 대한토목학회논문집, 대한토목학회, 제18권 제116호, pp. 563-570
- 권현한, 문영일(2005) 상태-공간 모형과 Nearest Neighbor 방법을 통한 수문시계열 예측에 관한 연구, 대한토목학회 논문집, 대한토목학회, 제25권 제4B호, pp. 275-283
- 문영일(1997) 시계열 수문자료의 비선형 상관관계. 한국수자원학회논문집, 한국수자원학회, 제30권, pp. 641-648
- 문영일(2000) 지역가중다항식을 이용한 예측모형, 한국수자원학회 논문집, 한국수자원학회, 제33권, pp. 31-38
- 박무종, 윤용남(1989) Multiplicative ARIMA 모형에 의한 월유량의 추계학적 모의 예측, 한국수자원학회논문집, 한국수자원학회, 제22권, pp. 331-339
- 안상진, 이재경(2000) 추계학적 모의발생기법을 이용한 월 유출 예측, 한국수자원학회논문집, 한국수자원학회, 제33권, pp. 159-167
- 윤강훈, 서봉철, 신현석(2004) 신경망을 이용한 낙동강 유역 홍수기 댐유입량예측, 한국수자원학회논문집, 한국수자원학회,제37권. pp. 67-75
- Abarbanel, H.D.I. and Lall, U. (I996) Nonlinear dynamics and the Great Salt Lake: system identification and prediction. Climate Dynamics, Vol. 12. pp. 287-297 https://doi.org/10.1007/BF00219502
- Abarbanel, H.D.I., Lall, U., Moon, Y.I, Mann, M., and Sangoyomi, T. (1996) Nonlinear dynamic of the great salt lake: a predictable indicator of regional climate, Energy, Vol. 21 (7/8), pp. 655-665 https://doi.org/10.1016/0360-5442(96)00018-7
- Boser, B.E., Guyon, I., and Vapnik, V. (1992) A training algorithm for optimal margin classifiers, Proceedings Fifth ACM Workshop on Computational Learning Theory, pp. 144-152
- Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20, pp. 273-297
- Cristianini, N. and Shawe-Taylor, J. (2000) An introduction to support vector machines and other kernel based learning methods. Cambridge University Press
- Dibike, B.Y., Velickov, S., Solomatine, D. and Abbot, B.M. (2001) Model induction with support vector machines: Introduction and applications, J Computing in Civil Eng., Vol. 15, No.3, pp. 208-216 https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
- Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A. and Vapnik, V. (1997) Support vector regression machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, Vol. 9, pp. 155-161, Cambridge, MA, MIT Press
- Girosi, F. (1998) An equivalence between sparse approximation and support vector machines, Neural Computation, Vol. 10, No.6, pp.1455-1480 https://doi.org/10.1162/089976698300017269
- Guyon, I., Boser, B., and Vapnik, V, (1993) Automatic capacity tuning of very large VC-dimension classifiers. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems, Vol. 5, pp. 147-155. Morgan Kaufmann, San Mateo, CA
- Hense, A. (1987) On the possible existence of a strange attractor for the southern oscillation. Beitr Phys. Atmos. Vol. 60, No. 1, pp. 34-47
- Hilborn, R.C. (1994) Chaos and Nonlinear Dynamics, Oxford University Press
- Huber, R, (1964) Robust estimation of a location parameter, Annals of Mathematical Statistics, Vol. 35, No. I, pp. 73-101 https://doi.org/10.1214/aoms/1177703732
- Jayawardena, A. W., and Lai, F. (1994) Analysis and prediction of chaos in rainfall and stream flow time series, J. Hydrol., Vol. 153, pp. 23-52 https://doi.org/10.1016/0022-1694(94)90185-6
- Kember, G, Flower, A.C., and Holubeshen, J. (1993) Forecasting river flow using nonlinear dynamics, Sthoch. Hydrol. Hydraul., Vol. 7, pp. 205-212 https://doi.org/10.1007/BF01585599
- Lall, U. and Mann, M.E. (1995) The great salt lake: a barometer of low-frequency climatic variability. Water Resour. Res., Vol. 31, No. 10, pp. 2503-2515 https://doi.org/10.1029/95WR01950
- Lall, U., Sangoyomi, T, and Abarbanel, H.D.I. (1996) nonlinear dynamics of the great salt lake: nonparametric short-term forecasting. Water Resour. Res., Vol. 32, No.4, pp. 975-985 https://doi.org/10.1029/95WR03402
- Liong S.Y. and Sivapragasam, C. (2002) flood stage forecasting with SVM, J. AWRA, Vol. 38, No.1, pp. 173-186
- Lorenz, E.N. (1963) Deterministic nonperiodic flow. J. Atmos. Sci. Vol. 20, 130-141 https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Ljung, G.M and Box, G.E.P. (1978) On a measure of lack of fit in time-series models, Biometrika, Vol. 65. pp. 297-303 https://doi.org/10.1093/biomet/65.2.297
- Mackey, M.C. and Glass, L. (1977) Oscillation and chaos in physiological control systems. Science, Vol. 197, pp. 287-289 https://doi.org/10.1126/science.267326
- Mann M.E, Lall, U., and Saltzman, B. (1995) Decadal-to-centennial-scale climate variability: Insight into rise and fall of the Great Salt Lake. Geophysical Res. Let., Vol. 22, No.8, pp. 937-940 https://doi.org/10.1029/95GL00704
- Mattera, D. and Haykin, S. (1999) Support vector machines for dynamic reconstruction of a chaotic system. In B. Scholkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pp. 211-242, Cambridge, MA, MIT Press
- Moon, Y.I. and Lall, U. (1996) Large scale atmospheric indices and the great salt lake: interannual and interdecadal variability, ASCE, J. of Hydrologic Eng., Vol. 1, No.2, pp. 55-62 https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(55)
- Muller, K.R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J., and Vapnik, V. (1999) Predicting time series with support vector machines. In B. Scholkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pp. 243-254, Cambridge, MA, MIT Press
- Rodriguez-Iturbe I., De Power, F.B., Sharifi, M.B., and Georgakakos, K.P. (1989) Chaos in rainfall, Water Resour. Res., Vol. 25, No.7, pp. 1667-1675 https://doi.org/10.1029/WR025i007p01667
- Sangoyomi, T. (1993) Climate variability and dynamics of Great Salt Lake hydrology, PhD dissertation. 247pp., Utah State Univ., Logan
- Sangoyomi, T, Lall, U., and Abarbanel, H.D.I. (1996) Nonlinear dynamics of the Great Salt Lake: Dimension estimation. Water Resour. Res., Vol. 32, No. 1, pp. 149-1599 https://doi.org/10.1029/95WR02872
- Sauer, Y., Yorke, J.A, and Casdagli, M. (1991) Embedology. Journal of Statistical Physics, Vol. 65, pp. 579-616 https://doi.org/10.1007/BF01053745
- Scholkopf, B., Burges, C., and Vapnik, V. (1995) Extracting support data for a given task. In U.M. Fayyad and R. Uthurusamy, editors, Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, AAAI Press
- Smith, J.A. (1991) Long-range streamflow forecasting using non-parametric regression, Water Resour, Bull., Vol. 27, No.1, pp. 39-46 https://doi.org/10.1111/j.1752-1688.1991.tb03111.x
- Smola, A.J. (1998) Learning with kernels. Ph.D. thesis. Technischen Universitat Berlin, Berlin, Germany
- Smola, A.J. and Scholkopf, B. (1998) A tutorial on support vector regression. NeuroCOLT2 Technical Report Series, NC2-TR-1998-030
- Takens, F. (1981) Detecting strange attractors in turbulence. In, Rand, D.A. and L.S. Young (eds.). Dynamical systems and Turbulence. Springer-Verlag. Berlin, pp. 366-381
- Tikhonov, A. and Arsenin, V. (1977) Solution of ill-posed problems, Washington, D.C. W.H. Winston
- Vapnik, V. (1995) The nature of statistical learning theory. Springer, New York
- Vapnik, V. (1998) Statistical learning theory. Wiley, New York
- Vapnik, V., Golowich, S., and Smola, A. (1997) Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA, MIT Press
- Yakowitz, S., and Karlsson, M. (1987) Nearest neighbor methods with application to rainfall/runoff prediction, Stochastic hydrology, Edited by Macneil, J.B., and Humphries, G.J., D. Reidel, Hingham, MA, pp. 149-160