• Title/Summary/Keyword: Dynamic Eddy Viscosity Model

Search Result 14, Processing Time 0.023 seconds

Large Eddy Simulation of Turbulent Channel Flow Through Estimation of Test Filter Width (Test Filter 너비의 추정을 통한 난류 채널 유동의 Large Eddy Simulation)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.853-858
    • /
    • 2003
  • The suitable estimation of the filter width in the dynamic eddy viscosity model were investigated in high Reynolds number channel flow. In this study, the improvement on matters by optimizing the test filter shape was attempted through the numerical experiment. The way that select optimum test filter width is recommended. Some test filters, one is based on a discrete representation of the top-hat filter and another are based on a high-order filtering operation, are evaluated in simulations of the turbulent channel flow at Reynolds number 1020, based on friction velocity and channel half width. It appears that the estimation of test filter width practically can decrease the dissipative nature of dynamic eddy viscosity model with explicit test filter. It shows that the value of the filter width ratio used in the dynamic procedure must match the properties of the test filter actually used in the calculation.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique (큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석)

  • Choe, Myeong-Ryeol;Choe, Hae-Cheon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

Large eddy simulations of the flow around a circular cylinder: effects of grid resolution and subgrid scale modeling

  • Salvatici, E.;Salvetti, M.V.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.419-436
    • /
    • 2003
  • Large-eddy simulations of the flow around a circular cylinder at a Reynolds number, based on cylinder diameter and free-stream velocity, $Re_D=2{\times}10^4$ are presented. Three different dynamic subgrid-scale models are used, viz. the dynamic eddy-viscosity model and two different mixed two-parameter models. The sensitivity to grid refinement in the spanwise and radial directions is systematically investigated. For the highest resolution considered, the effects of subgrid-scale modeling are also discussed in detail. In particular, it is shown that SGS modeling has a significant influence on the low-frequency modulations of the aerodynamics loads, which are related to significant changes in the near wake structure.

On Subgrid-Scale Models for Large-Fddy Simulation of Turbulent Flows (난류유동의 큰 에디 모사를 위한 아격자 모델)

  • Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1523-1534
    • /
    • 2000
  • The performance of a number of existing dynamic subgrid-scale(SGS) models is evaluated in large-eddy simulations(LES) of two prototype transitional and turbulent shear flows, a planar jet and a channel flow. The dynamic SGS models applied include the dynamic Smagorinsky model(DSM);Germano et al. 1991, Lully 1992), the dynamic tow-component model(DTM; Akhavan et al. 2000), the dynamic mixed model(DMM;Zang et al, 1993). and the dynamic two-parameter model(DTPM; Salvetti & Banerjee 1995). The results are compared with those for DNS for their evaluation. The LES results demonstrate the superior performance of DTM with use of a sharp cutoff filter and DMM with use of a box filter, as compared to their respect counterpart DSM, in predicting the mean statistics, spectra and large-scale structure of the flow, Such features of DTM and DMM derive from the construction of the models in which tow separate terms are included to represent the SGS interactions; a Smagorinsky edd-viscosity term to account for the non-local interactions, and a local-interaction term to account for the nonlinear dynamics between the resolved and subgrid scales in the vicinity of the LES cutoff. As well, overall the SGS models using a sharp cutoff filter are more successful than those using a box filter in capturing the statistics and structure of the flow. Finally, DTPM is found to be compatible or inferior to DMM.

Large Eddy Simulation of Turbulent Channel Flow Using Inhomogeneous Filter (비균질 필터를 사용한 난류 채널 유동의 Large Eddy Simulation)

  • Lee, Sang-Hwan;Kim, Kwang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1022-1031
    • /
    • 2004
  • The commutation errors by the filtering process in the large eddy simulation are considered. It is compared the conventional filter with the inhomogeneous filter that is devised to reduce the commutation errors. The weighting factor of the inhomogeneous filter suggested by Vasilyev is adopted. Also, using the optimizing function that estimates test filter width to eliminate the dissipations in the region excluding the vicinity of the wall, the flow patterns are analyzed. It is evaluated in simulations of the turbulent channel flow at Reynolds number of 1020, based on friction velocity and channel half height. Results show that the commutation errors can be significantly reduced by using the inhomogeneous filter and the optimized test filter width.

LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor (선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Kim, Se-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Large Eddy Simulation of Boundary Layer Transition on the Turbine Blade (LES를 이용한 축류 터빈 경계층 천이에 대한 수치해석)

  • Jin, Byung-Ju;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.392-397
    • /
    • 2001
  • A numerical study is performed to investigate the interaction between subsonic axial turbine blade boundary layer and periodically oncoming rotor induced wakes. An implicit scheme for solving the compressible Navier-Stokes equation is developed, which adopts a 4th-order compact difference for spatial discretiztion, a 2nd order Crank-Nicolson scheme for temporal discretization and the dynamic eddy viscosity model as the subgrid scale model. The efficiency and the accuracy of the proposed method are verified by applying to some benchmark problems such as laminar cylinder flow, laminar airfoil cascade flow and a transitional flat plate boundary layer flow. Computational results show good agreements with previous experimental and numerical results. Finally, flow through a stator cascade is simulated at $Re = 7.5{\times}10^5$ without free-stream turbulence intensity. The velocity fields and skin friction coefficients in the transitional region show similar trends with previous boundary layer natural transition.

  • PDF

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Development of a Time-Domain Simulation Tool for Offshore Wind Farms

  • Kim, Hyungyu;Kim, Kwansoo;Paek, Insu;Yoo, Neungsoo
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1047-1053
    • /
    • 2015
  • A time-domain simulation tool to predict the dynamic power output of wind turbines in an offshore wind farm was developed in this study. A wind turbine model consisting of first or second order transfer functions of various wind turbine elements was combined with the Ainslie's eddy viscosity wake model to construct the simulation tool. The wind turbine model also includes an aerodynamic model that is a look up table of power and thrust coefficients with respect to the tip speed ratio and pitch angle of the wind turbine obtained by a commercial multi-body dynamics simulation tool. The wake model includes algorithms of superposition of multiple wakes and propagation based on Taylor's frozen turbulence assumption. Torque and pitch control algorithms were implemented in the simulation tool to perform max-Cp and power regulation control of the wind turbines. The simulation tool calculates wind speeds in the two-dimensional domain of the wind farm at the hub height of the wind turbines and yields power outputs from individual wind turbines. The NREL 5MW reference wind turbine was targeted as a wind turbine to obtain parameters for the simulation. To validate the simulation tool, a Danish offshore wind farm with 80 wind turbines was modelled and used to predict the power from the wind farm. A comparison of the prediction with the measured values available in literature showed that the results from the simulation program were fairly close to the measured results in literature except when the wind turbines are congruent with the wind direction.