• 제목/요약/키워드: Dynamic Dissipation

검색결과 345건 처리시간 0.026초

Time-resolved Observation of Field-dependent Magnetization Reversal Behavior in Co/Pd Multilayer Film

  • Ryu, Kwang-Su;Lee, Kyeong-Dong;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • 제8권3호
    • /
    • pp.108-112
    • /
    • 2003
  • We report the experimental finding that there exists a transition of magnetization reversal process with varying the applied field in Co/Pd multilayer. We have measured the wall-motion speed V and the nucleation rate R during magnetization reversal via time-resolved direct domain observation, where the magnetization reversal process of Co/Pd multilayer is found to take a transition from thermal activation process to viscous process at the critical field of about 1.87 H$\_$C/ (coercivity). In the thermal activation regime, we find that the field dependences of two activation volumes for the wall-motion process and the nucleation process are different with each other, which reveals that the wall-motion and nucleation experience completely different interactions. In the viscous regime, we find that the wall-mobility is much smaller than a typical value for the sandwiched Co films, which implies that the Co/Pd interfaces in multilayer substantially contribute to the dynamic dissipation.

변동풍속의 파워 스펙트럴 밀도에 관한 평가 (Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity)

  • 오종섭
    • 한국방재안전학회논문집
    • /
    • 제10권2호
    • /
    • pp.21-28
    • /
    • 2017
  • 시공간적으로 불규칙하게 작용하는 변동 풍속 난류의 자료는 풍공학적으로 돌풍계수 평균풍속 변동 풍하중등의 계산에서 요구되지만, 내풍 및 사용성에 따른 동적응답의 평가에서는 변동 풍속의 파워 스펙트럴 밀도함수가 요구된다. 본 논문에서는 1987-2016.12.1일까지의 일순간최대풍속 자료를 확률과정으로 가정했고, 이 실측된 자료와 확률이론을 근거로 평균류방향 파워 스펙트럴 밀도 함수에 대한 기초적 자료를 얻고자 대표지점(6개 지점)을 선정했다. 선정된 각 지점에 대한 일순간최대풍속자료는 기상청으로부터 획득했다. 해석결과 본 논문에서 평가된 스펙트럼 모델은 저진동수 영역에서는 Solari, 고진동수 영역에서는 von Karman의 모델과 근접한 현상을 나타냈다.

Physics of Solar Flares

  • Magara, Tetsuya
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

여수로에서 도수 수치해석 연구 (Numerical Investigation of Hydraulic Jump in a Spillway)

  • 백중철;류용욱;이남주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.66-66
    • /
    • 2017
  • 하천에 설치된 저낙차 보의 여수로나 위어는 일반적으로 도수가 발생하도록 설계한다. 이러한 수공구조물위를 통과하는 흐름이 갖는 강한 운동에너지를 소산시키는데 도수는 중요한 역할을 한다. 난류흐름과 도수의 수면부근에서 형성되는 롤러 형태의 와류가 이러한 에너지 소산의 대부분을 유발한다. 이 연구에서는 여수로에서 발생하는 수중 도수 현상을 고해상도 3차원 수치모의를 통해서 재현하고 실험실에서 PIV를 이용해서 관측한 실험결과와 비교분석 한다. 아울러 수치모의 결과는 수중의 바닥면을 따라 발생하는 ?의 내부와 외부 전단층 그리고 도수에 의해서 발생하는 제순한 와류의 동적 거동 특성을 제시한다.

  • PDF

자동차 휠용 6061 Al합금의 고온변형거동에 따른 단조성형조건 설계 (Forging Process Design by High Temperature Deformation Behavior of the 6061 Aluminum Alloy)

  • 이동근;이지혜;김정한;박노광;이용태;정헌수
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.449-457
    • /
    • 2008
  • Compression deformation behaviors at high temperature as a function of temperature and strain rate were investigated in the 6061 aluminum alloy, which is used for automobile wheel. Compression tests were carried out in the range of temperatures $300{\sim}475^{\circ}C$ and strain rate $10^{-3}{\sim}10^{-1}sec^{-1}$. By analyzing these results, strain rate sensitivity, deformation temperature sensitivity, the efficiency of power dissipation, Ziegler's instability criterion, etc were calculated, which were plastic deformation instability parameters as suggested by Ziegler, Malas, etc. Furthermore, deformation processing map was drawn by introducing dynamic materials model (DMM) and Ziegler's Continuum Criteria. This processing map was evaluated by relating the deformation instability conditions and the real microstructures. As a result, the optimum forging condition for the automobile wheel with the 6061 aluminum alloy was designed at temperature $450^{\circ}C$, strain rate $1.0{\times}10^{-1}sec^{-1}$. It was also confirmed by DEFORM finite element analysis tool with simulation process.

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • 제35권2호
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.