• Title/Summary/Keyword: Dynamic Dissipation

Search Result 340, Processing Time 0.031 seconds

Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비선형 동적 해석을 위한 성치 측정에 의한 예측 접근법)

  • 김교신;전경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Current seismic design philosophy for reinforced concrete (RC) structures on energy dissipation through large inelastic defomations. A nonlinear dynamic analysis which is used to represent this behavior is time consuming and expensive, particularly if the computations have to be repeated many times. Therefore, the selection of an efficient yet accurate alogorithm becomes important. The main objective of the present study is to propose a new technique herein called the prediction approach with siffness measure (PASM) method in the convetional direct integration methods, the triangular decomposition of matrix is required for solving equations of motion in every time step or every iteration. The PASM method uses a limited number of predetermined decomposed effective matrices obtained from stiffness states of the structure when it is deformed into the nonlinear range by statically applied cyclic loading. The method to be developed herein will reduce the overall numerical effort when compared to approaches which recompute the stiffness in each time step or iteration.

  • PDF

Experimental study of vibration characteristics of FRP cables based on Long-Gauge strain

  • Xia, Qi;Wu, JiaJia;Zhu, XueWu;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.735-742
    • /
    • 2017
  • Steel cables as the most important components are widely used in the certain types of structures such as cable-supported bridges, but the long-span structures may result in an increase in fatigue under high stress and corrosion of steel cables. The traditional steel cable is becoming a more evident hindrance. Fiber Reinforced Polymer (FRP) cables with lightweight, high-strength are widely used in civil engineering, but there is little research in vibrational characteristics of FRP cables, especially on the damping characteristic. This article studied the two methods to evaluate dynamical damping characteristic of basalt FRP(BFRP) and glass FRP(GFRP) cables. First, the vibration tests of the B/G FRP cables with different diameter and different cable force were executed. Second, the cables forces were calculated using dynamic strain, static strain and dynamic acceleration respectively, which were further compared with the measured force. Third, experimental modal damping of each cables was calculated by the half power point method, and was compared with the calculation by Rayleigh damping theory and energy dissipation damping theory. The results indicate that (1) The experimental damping of FRP cables decreases with the increase of cable force, and the trend of experimental damping changes is roughly similar with the theoretical damping. (2) The distribution of modal damping calculated by Rayleigh damping theory is closer to the experimental results, and the damping performance of GFRP cables is better than BFRP cables.

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Design of 3V CMOS Continuous-Time Filter Using Fully-Balanced Current Integrator (완전평형 전류 적분기를 이용한 3V CMOS 연속시간 필터 설계)

  • An, Jeong-Cheol;Yu, Yeong-Gyu;Choe, Seok-U;Kim, Dong-Yong;Yun, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.28-34
    • /
    • 2000
  • In this paper, a continuous-time filter for low voltage and high frequency applications using fully-balanced current integrators is presented. As the balanced structure of integrator circuits, the designed filter has improved noise characteristics and wide dynamic range since even-order harmonics are cancelled and the input signal range is doubled. Using complementary current mirrors, bias circuits are simplified and the cutoff frequency of filters can be controlled easily by a single DC bias current. As a design example, the 3rd-order lowpass Butterworth filter with a leapfrog realization is designed. The designed fully-balanced current-mode filter is simulated and examined by SPICE using 0.65${\mu}{\textrm}{m}$ CMOS n-well process parameters. The simulation results show 50MHz cutoff frequency, 69㏈ dynamic range with 1% total harmonic distortion(THD), and 4㎽ power dissipation with a 3V supply voltage.

  • PDF

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.

Seismic Behavior of Viscoelastically Damped Steel-Frame Structures (점탄성 감쇠기를 설치한 강구조건물의 지진하중에 대한 거동 연구)

  • 오순택
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.127-135
    • /
    • 1993
  • This paper summarizes a study on the application of viscoelastic dampers as an energy dissipation device in the frame structure. It can be concluded that, even at high temperatures, the viscoelastically damped structure can achieve a significant reduction of structural response as compared to the case with no dampers added. Empirical formulae for estimating the dynamic properties of the viscoelastic damper are established based on the regression analysis using data obtained from component tests of the damper. The structural damping with added dampers can be satisfactorily estimated by the modal strain energy method and the derived empirical formulae. Numerical simulations using conventional modal analysis methods are also carried out to predict the dynamic response of viscoelastically damped structures under seismic excitations. Comparison between numerical simulations and test results shows very good agreement. Based on the above studies, a design procedure for viscoelastically damped structures is present . This design procedure fits naturally into the conventional structural design flow-chart by including damping ratio an additional design parameter.

  • PDF

Application Study of Recoil Mechanism using Friction Springs (마찰스프링의 주퇴복좌장치 적용성 연구)

  • Cha, Ki-Up;Gimm, Hak-In;Cho, Chang-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

Dynamic Capacity Concept and its Determination for Managing Congested Flow (혼잡교통류 관리를 위한 동적 용량의 개념 및 산정방법)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.159-166
    • /
    • 2004
  • The capacity concept presented in the Highway Capacity Manual is for steady-state traffic flow assuming that there is no restriction in downstream flowing, which is traditionally used for planning, design, and operational analyses. In the congested traffic condition, the control objective should be to keep the congested regime from growing and to recover the normal traffic condition as soon as possible. In this control case, it is important to predict the spatial-temporal pattern of congestion evolution or dissipation and to estimate the throughput reduction according to the spatial-temporal pattern. In this context, the new concept of dynamic capacity for managing congested traffic is developed in terms of spatial-temporal evolution of downstream traffic congestion and in view of the 'input' concept assuming that flow is restricted by downstream condition rather than the 'output' concept assuming that there is no restriction in downstream flowing (e.g. the mean queue discharge flow rate). This new capacity is defined as the Maximum Sustainable Throughput that is determined based on the spatial-temporal evolution pattern of downstream congestion. And the spatial-temporal evolution pattern is estimated using the Newell's simplified q-k model.

Low-Power Multiplier Using Input Data Partition (입력 데이터 분할을 이용한 저전력 부스 곱셈기 설계)

  • Park Jongsu;Kim Jinsang;Cho Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, we propose a low-power Booth multiplication which reduces the switching activities of partial products during multiplication process. Radix-4 Booth algorithm has a characteristic that produces the Booth encoded products with zero when input data have sequentially equal values (0 or 1). Therefore, partial products have higher chances of being zero when an input with a smaller effective dynamic range of two multiplication inputs is used as a multiplier data instead of a multiplicand. The proposed multiplier divides a multiplication expression into several multiplication expressions with smaller bits than those of an original input data, and each multiplication is computed independently for the Booth encoding. Finally, the results of each multiplication are added. This means that the proposed multiplier has a higher chance to have zero encoded products so that we can implement a low power multiplier with the smaller switching activity. Implementation results show the proposed multiplier can save maximally about $20\%$ power dissipation than a previous Booth multiplier.