• 제목/요약/키워드: Dynamic Design Analysis Method

검색결과 1,559건 처리시간 0.029초

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구 (A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique)

  • 배동명
    • 수산해양기술연구
    • /
    • 제29권2호
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF

액체로켓 엔진의 동특성 모델을 이용한 전달함수의 계산 (Calculation of the Transfer Function for a Liquid Rocket Engine using a Dynamic Model)

  • 박순영;이은석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.436-442
    • /
    • 2012
  • 액체로켓 엔진의 제어 로직이나 제어 알고리즘을 설계하고 유량제어밸브의 작동 스킴을 결정하는데 있어서 엔진의 동특성을 파악하는 것은 무엇보다 중요한 일이다. 하지만 엔진의 동특성을 시험을 통해서 사전에 얻는 것은 상당히 어려운 일이기 때문에 해석적인 모델을 이용하는 경우가 많다. 이에 본 연구에서는 기존에 개발된 엔진의 정상상태 부근에서의 동특성 해석 모델을 이용하여 이러한 동특성 모델을 계산하였다. 해석 모델을 이용하여 외란을 가하여 얻어진 응답특성을 Levy 방법을 이용하여 엔진의 동특성 모델을 하나의 전달함수로 근사할 수 있음을 보였다.

  • PDF

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계 (System Analysis and Design for Vibration-Based Power Generation using Piezoelectric Materials)

  • 금명훈;김경호;이승엽;고병식
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.717-725
    • /
    • 2004
  • A power generation systems are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agree with the theoretical predictions. The system is shown to produce 34.5 ㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계 (System Analysis and Design for a Vibration Converted Power Generator using Piezo Materials)

  • 금명훈;이승엽;고병식;김경호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1059-1066
    • /
    • 2003
  • A power generation system are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agrees with the theoretical predictions. The system is shown to produce 2.53㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

  • PDF

케이블 지지교량의 내진해석 (Seismic Analysis of Cable-Supported Bridges)

  • 서영국;정운용;조준상
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.233-240
    • /
    • 1999
  • A general procedure is presented here to develope seismic design and analysis method for cable-supported bridges like suspension bridges subjected to ground motion. For representing a numerical model of suspension bridges. a new approach which satisfy design conditions for the initial equilibrium state of suspension bridges. without any nonlinear iterations. is proposed. The dynamic behavior of that model is verified by free vibration analysis. This study uses the response spectrum analysis to determine the Peak response of a suspension bridge to earthquake-induced ground motion. The SRSS(Square Root of Sum of Square). modal combination rule, is adopted for each direction, longitudinal and transverse. To illustrate the potential applicability for the seismic design of suspension bridges, a numerical example is presented in which the dynamic response of the Nam-hae suspension bridge subjected to earthquake

  • PDF

공작기계 베어링 결합부의 동적 모델링 연구 (A Study on the Dynamic Modelling of Bearing Joints in Machine Tools)

  • 이신영;이장무
    • 한국정밀공학회지
    • /
    • 제9권2호
    • /
    • pp.61-68
    • /
    • 1992
  • To meet the requirements for accuracy, productivity and reliability of machine tools, it is necessary to evaluate the chatter-free machining performance and to improve the dynamic performance of machine tools. In order to perform dynamic design of machine tools reasonably and effectively, the joint parts must be modelled accurately because their characteristics affect significantly on the total characteristics of machine tool. In this paper, an approach which identifies the effect of joint parts on the performance of total machine tool structure was proposed. That uses the experimental modal analysis, the finite element method and the sensitivity analysis method. The effectiveness of this approach was confirmed by applying it to structures with bearing joints. And as a result of the application, the change of dynamic characteristics of bearing joints was indentified.

  • PDF

지반위에 놓인 변단면 후판의 안정해석 (Stability Analysis of Tapered Thick Plate on Foundation)

  • 김일중;오숙경;이용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.819-822
    • /
    • 2006
  • This paper has the objects of deciding dynamic instability regions of thick plates on inhomogeneous Pasternak foundation by finite element method and providing kinematic design data for mats and slabs of building structures. In this paper, dynamic stability analysis of tapered opening thick plate is done by use of Serendipity finite element with 8 nodes considering shearing strain of plate. To verify this finite element method, buckling stress and natural frequencies of thick pate with or without in-plane stress are compared with existing solutions. The results are as follow that this finite element solutions with $4{\times}4$ meshes are shown the error of maximum 0.56% about existing solutions, and the larger foundation parameters, the farther dynamic instability regions are from vertical axis of graph presented relation of ${\beta}\;and\;\overline{\omega}/\omega$.

  • PDF