• Title/Summary/Keyword: Dynamic Design Analysis Method

Search Result 1,559, Processing Time 0.033 seconds

Design and Dynamic Analysis of Air-core Coil type Linear DC Motor (공심 코일형 리니어 DC 모터의 설계 및 동특성 해석)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak;Ha, Geun-Su;Jeong, Jung-Gi;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.165-171
    • /
    • 2000
  • This paper proposes a technique to design of air-core type Linear DC Motor(LDM) by using Equivalent Magnetizing Current(EMC) method and has performed its dynamic analysis. The magnetic flux density differ in accordance with airgap position due to difference of mechanical and magnetic air gap length and the coil shape has an influence on the thrust. Therefore, the analysis of magnetic field due to the magnets is carried out by EMC. The phenomena according to the various coil various coil shape under the same Magneto Motive Force(MMF) has been analyzed and its result is applied to the design process. The appropriateness of the proposed technique is confirmed by Finite Element Method(FEM) and its dynamic analysis is carried out from the coupling of the electrical circuit equation and mechanical kinetic equation.

  • PDF

The transient and frequency response analysis using the multi-level system condensation in the large-scaled structural dynamic problem

  • Baek, Sungmin;Cho, Maenghyo
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.429-441
    • /
    • 2011
  • In large-scale problem, a huge size of computational resources is needed for a reliable solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction schemes have been considered as important technique to resolve computational resource problems. In addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS). This scheme was proposed for approximating the lower eigenmodes which represent the global behavior of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer memory and computing time. The present study focuses on the implementation of the MLSC on the direct time response analysis and the frequency response analysis of structural dynamic problems. For the transient time response analysis, the MLSC is combined with the Newmark's time integration scheme. Numerical examples demonstrate the efficiency of the proposed method.

Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer (초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접)

  • Lee, G.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance (유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구)

  • 홍지수;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

Development of Simulation System for Front Attachment of Excavator (굴삭기 작업장치의 해석시스템 개발)

  • Gwon, Sun-Gi;Park, Hyeong-Jin;Kim, Hyeong-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1401-1410
    • /
    • 1996
  • This paper present a method to predict fatigue life of a construction equipment performing static stress analysis and dynamic stress analysis using the computer simulation for proto and pilot type model. The parameter of design variable is used for finite elemt modeling of a excavator. Desinger can design reliable product and shorten lead time by using "Simulation System for Front Attachment of Excavator" develped in this study.his study.

Effects of Design on the Dynamic Response of Reinforced Concrete Slabs (철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

Design and Characteristic Analysis of Vaccum Pump Using Moving Magnet type Linear Oscillatory Actuator (가동 영구자석형 리니어 진동 액츄에이터를 이용한 진공 펌프의 설계 및 특성해석)

  • Cho, Sung-Ho;Kim, Duk-Hyun;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.61-63
    • /
    • 2002
  • This paper deals with the design of vaccum pump using moving magnet type linear oscillaory actuator based on the design procedure and the characteristic analysis. To improve the starting characteristic, the optimum spring constant is detected and redesigned. The parameter was calculated by Finite Element Method(FEM). In order to dynamic characteristic analysis. Time difference method with voltage and kinetic equation is used.

  • PDF

Computational Design of Bifurcation: A Case Study of Darundi Khola Hydropower Project

  • Koirala, Ravi;Chitrakar, Sailesh;Neopane, Hari Prasad;Chhetri, Balendra;Thapa, Bhola
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Bifurcation refers to wye division of penstock to divide the flow symmetrically or unsymmetrically into two units of turbine for maintaining economical, technical and geological substrates. Particularly, water shows irrelevant behavior when there is a sudden change in flow direction, which results into the transition of the static and dynamic behavior of the flow. Hence, special care and design considerations are required both hydraulically and structurally. The transition induced losses and extra stresses are major features to be examined. The research on design and analysis of bifurcation is one of the oldest topics related to R&D of hydro-mechanical components for hydropower plants. As far as the earlier approaches are concerned, the hydraulic designs were performed based on graphical data sheet, head loss considerations and the mechanical analysis through simplified beam approach. In this paper, the multi prospect approach for design of Bifurcation, incorporating the modern day's tools and technology is identified. The hydraulic design of bifurcation is a major function of dynamic characteristics of the flow, which is performed with CFD analysis for minimum losses and better hydraulic performances. Additionally, for the mechanical design, a simplified conventional design method as pre-estimation and Finite Element Method for a relevant result projections were used.

Dynamic Characteristics Analysis of Stacker Crane for Automatic Warehouse(I) (자동창고용 스태커 크레인의 동특성 해석(I))

  • Shin, Sang-Ryong;Lee, Yun-Sig;Kim, Jong-Jun;Lee, Ho-Taek;Lee, Sang-Hul;Yun, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.428-435
    • /
    • 2001
  • In this paper, the design factors of stacker crane for the automatic warehouse are verified by dynamic simulation process. Simulation model is designed as the form of rigid elements and discrete flexible beam connections. The various result for structural design of stacker crane is produced by dynamic simulation and experiment. For the simulation of structural dynamics, ADAMS which is a software for kinematic & dynamic simulation, is used. In order to verify the analysis method, simulation and experiment result are compared.

  • PDF

Sensitivity Analysis of Dynamic Characteristics of Structural Systems by the Transfer Matrix Method and the Combined Finite Element-Transfer Matrix Method (전달매트릭스법 및 유한요소-전달매트릭스 결합방법에 의한 구조계의 동특성 감도해석)

  • D.S. Cho;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.143-157
    • /
    • 1992
  • For the design of structural systems having the prescribed or optimum dynamic characteristics, some design changes of the initially designed system are required. In these cases, if the sensitivity analysis which can predict the changes of dynamic characteristics due to the changes of design variables is applied, the design changes can be carried out rationally and very efficiently. For many structural systems, it is well known that the analysis by the transfer matrix method(TMM) and the combined finite element-transfer matrix method(FETMM) is more efficient than the analysis by the finite element method. However, most known studies on the sensitivity analysis of structural systems premise using the finite element method. In this paper, the sensitivity analysis methods by the TMM and the FETMM are presented and some numerical investigations on the beam-column with elastically restrained ends and intermediate contraints and the stiffened plate having subsystems are carried out. The results of the numerical examples show good accuracy and computational efficiency of the presented methods, and show that the application of sensitivity analysis in the dynamic characteristic reanalysis give good results within the practically changeable range of design variables.

  • PDF