• 제목/요약/키워드: Dynamic Damping Coefficient

검색결과 220건 처리시간 0.026초

틸팅 패드 추력베어링의 동특성 해석 (An Analysis of Dynamic Characteristics of Tilling Pad Thrust Bearings)

  • 김종수
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.33-41
    • /
    • 1997
  • In this paper the linearized stiffness and damping coefficients of tilting pad thrust bearing are calculated by the perturbation method. The coefficients are obtained for a wide range of pivot positions. The effects of exciting frequency and pad mass on stiffness and damping coefficients are investigated. Critical frequencies due to the tilting motions of the pad are presented and are shown to be strongly influenced by the pivot position and the pad mass.

능동제어되는 자기부상열차와 교량의 동적상호작용해석 (Dynamic interaction analysis between actively controlled Maglev and bridge)

  • 이준석;권순덕;여인호;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

In-situ dynamic loading test of a hybrid continuous arch bridge

  • Gou, Hongye;Li, Liang;Hong, Yu;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.809-817
    • /
    • 2021
  • In this study, the dynamic behavior of a three-span hybrid continuous arch bridge under vehicle loading is investigated. The natural vibration characteristics of the bridge were analyzed through pulsation test. In the dynamic loading test, the vibrations of the bridge under different truck speeds and different pavement conditions were tested, and time histories of deflection and acceleration of the bridge were measured. Based on the dynamic loading test, the impact coefficient was analyzed. The results indicate that the pavement smoothness had more impacts on the vibration of the bridge than the truck's speed. The vertical damping of the bridge under the excitation of the trucks is larger than the transverse damping. Resonance occurs at the side span of the bridge under a truck at 10 km/h.

하드 디스크 드라이브 비 동작 충격 시에 내부 파트들의 동 특성에 대한 연구 (A study on dynamic behavior of inner parts with non-operational shock in hard disk drive)

  • 최용호;최종학;임건엽;서준호;박노철
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.32-35
    • /
    • 2013
  • Nowadays, function related to anti-vibration and anti-shock of storage devices is required because of portability. Therefore, many hard disk drive (HDD) studies about external shock and vibration have been performed. Especially, many studies are performed with non-operational shock. Most studies have used the fixed condition between spindle system and base when they wanted to analyze dynamic behavior of inner parts in simulation. But spindle system has actually stiffness and damping coefficient. Maybe difference of value would be happened between fixed condition and spring condition. So, we measured FRF of spindle system to know stiffness and damping coefficient in HDD. And we studied on dynamic behavior of inner parts by using calculated stiffness and damping coefficient. As a result, we confirmed the difference as boundary condition of spindle system.

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

가스절연 개폐장치 투입저항의 동특성 해석 (Dynamic Characteristics Analysis of Closing Resistors of Gas Insulated Switchgear)

  • 조해용;이성호;임성삼;이기정;김민우
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.104-110
    • /
    • 2005
  • GIS(Gas Insulated Switchgear) is used in electric power system, to insure non conductivity, breaking capacity and operating reliability. The commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS were used to simulate dynamic analysis of the closing resistors of the GIS in this paper. To reduce chatter vibration of closing resistors, the motion of moving and fixed parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed parts. The simulated results were compared with experimental results. As a result, chatter vibration of closing resistors of the GIS could be reduced by using the results. These data can be used to determine the spring constant, the damping coefficient and mass of a moving part to reduce chatter vibration when the next model is developed.

Dynamic Analysis on the Closing Resistors of Gas Insulated Switchgear

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1607-1613
    • /
    • 2006
  • GIS (Gas Insulated Switchgear) is used in electric power system to insure non conductivity, breaking capacity and operating reliability. In the present study, dynamic analysis on the closing resistors of the GIS has bees carried out by the commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS. In order to find the minimum value of chatter vibration of closing resistors, the motion of moving and fixed resistor parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed resistor parts. The simulated results were compared with experimental results. The application of the results could reduce chatter vibration of closing resistors of the GIS. These data are also useful on the development of future model GIS with minimum chatter vibration for the determinations of the spring constant, the damping coefficient and mass of a moving part.

질량과 강성 변경 따른 감쇠구조물의 동특성 변화 해석 (Eigenderivative Analysis of the Damped Structurure due to Modification of Mass and Stiffness)

  • 이정윤
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.7-12
    • /
    • 2005
  • This study predicts the modified eigenvectors and eigenvalues of the damped structure due to the change in the mass, damping and stiffness of structure by calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of the damped 3 degree of freedom system by modifing the mass, damping and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass, damping and stiffness.

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.

Study on structural damping of aluminium using multi-layered and jointed construction

  • Nanda, B.K.;Behera, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.631-653
    • /
    • 2005
  • In this work, the mechanism of damping and its theoretical evaluation for layered aluminium cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening torque have been considered. Extensive experiments have been conducted on a number of specimens for comparison with numerical results. Intensity of interface pressure, its distribution pattern, dynamic slip ratio and kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts, frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved largely with an increase in number of layers maintaining uniform intensity of pressure distribution at the interfaces. Thus the above principle can be utilized in practice for construction of aircraft and aerospace structures effectively in order to improve their damping capacity which is one of the prime considerations for their design.