• 제목/요약/키워드: Dynamic Concentrated Load

검색결과 63건 처리시간 0.021초

스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석 (Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method)

  • 이준근;이우식
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

이동하는 동적하중을 받는 탄성보의 진동해석 (Vibration Analysis of Elastic Beams Subjected to Moving Load)

  • 윤일성;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.408-413
    • /
    • 1997
  • The linear dynamic response of a simply supported uniform beam under a moving load of constant magnitude is investigated. When the ratio of the moving weight and the structure weight is small, moving object is considered as a concentrated or distributed moving force, that is large external loading can be considered as a concentrated or distributed moving masses. Result from the numerical solutions of the differential equations of motion are shown graphically. Moreover, when considering the maximum deflection for the mid-span of the hewn, the critical speeds of the moving load have been evaluated.

  • PDF

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • 제5권2호
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

지지조건을 고려한 낮은 포물선 아치의 동적 임계하중의 해석 (An Analysis of Dynamic Critical Loads for Low Parabolic Arches with Different End Conditions)

  • 박승범
    • 한국농공학회지
    • /
    • 제28권2호
    • /
    • pp.87-92
    • /
    • 1986
  • The differential equation, which can determine the dynamic critical loads for low parabcoic arches, is derived in this study. The dynamic critical loads of the parabolic arches subjected to a concentrated step load are nummerically analyzed for the changes of load positions. In cases of arches with different end conditions (both hinged, fixed hinged, both fixed), the effect of end conditions and that of the rises are investigated in detail. The summary of the results are the following: 1)The snapthrough does not occur when the rise of arch is very low, and the bifurcation appears clearly as the rise of arch increases. 2)The regions in which the dynamic critical loads are not defined for the both ends fixed are broader than that for the both ends hinged. 3)For all case, the load positions of minimum dynamic critical loads exsit at the near position from the end hinged. Thus, the results obtained in present study show that the magnitude of dynamic critical loads, the load positions of minimum dynamic critical loads and the regions in which the dynamic critical loads are not defined depend on end conditions of arches.

  • PDF

Pasternak지반에 지지된 집중질량을 갖는 보강된 변단면 후판의 동적안정해석 (Dynamic Stability Analysis of Stiffened Tapered Thick Plate with Concentrated Mass on Pasternak Foundations)

  • 이용수;김일중
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1296-1305
    • /
    • 2009
  • This paper has the object of investigating dynamic stability of stiffened tapered thick plate with concentrated mass on Pasternak foundation by means of finite element method and providing kinematic design data for mat of building structures. Finite element analysis of stiffened tapered thick plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation, the Winkler foundation parameter is varied with 10, 100, 1000 and the shear foundation parameter is 5, 10, concentrated mass is $0.25m_c$, $1.0m_c$, tapered ratio is 0.25, 0.5. The ratio of In-plane force to critical load is applied as $0.4\sigma_{cr},\;0.6\sigma_{cr},\;0.8\sigma_{cr}$ respectively. This paper analyzed varying tapered ratio.

Dynamic Stability of a Cantilevered Timoshenko Beam on Partial Elastic Foundations Subjected to a Follower Force

  • Ryu, Bong-Jo;Shin, Kwang-Bok;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1355-1360
    • /
    • 2006
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented.

집중질량 크기 변화해 따른 변단면판의 동적안정해석 (Dynamic Stability Analysis of Tapered Thick Plate on varying Concentrated Mass)

  • 김일중;오숙경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2007
  • This paper has the object of investigating dynamic stability of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. Finite element analysis of Tapered Thick plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation. the Winkler foundation parameter is varied with $10^2$, $10^3$ and the shear foundation parameter is 5, 10. The ratio of force to critical load is applied as 0.4, 0.6, respectively. This paper analyzed varying Tapered Ratio and Concentrated Mass.

  • PDF

충격하중을 받는 유한평판의 3차원 동탄성이론에 의한 응력해석

  • 양인영;김선규;박정수
    • 오토저널
    • /
    • 제13권5호
    • /
    • pp.51-64
    • /
    • 1991
  • In this paper, an attempt is made to analyze the impulsive stress directly underneath the concentrated impact point for a supported square plate by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement (stress function) on the supposition that the load, F$_{*}$0 sin .omega.t, acted on the central part of it. The results obtained from this study are as follows: 1. The impulsive stress cannot be analyzed directly underneath the acting point of concenrated impact load in privious theories, but can be analyzed by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement. 2. Theorically, with increasing the pulse width of applied load, it was possible to clarify that the amount of stress in the point of concentrated impact load was increased and that of stress per unit impulse was decreased. 3. The numerical inversion of laplace transformation by the use of the F.F.T algorithm contributes the reduction of C.P.U time and the improvement of the accuracy or results. 4. In this paper recommended, it is found that the approximate equation of impact load function P (.tau.) = A.tau. exp (-B.tau.), and P (.tau.) =0.85A exp (-B.tau.) sinC.tau. could actually apply to all impact problem. In compared with the experimental results, the propriety of the analytical method is reasonable.

  • PDF

전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템 (A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring))

  • 남석현;이수길;홍진영;김정년;정성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.