• Title/Summary/Keyword: Dye degradation

Search Result 207, Processing Time 0.028 seconds

Analysis of the Effect of Mordants on the Degradation of Alizarin in Silk Dyed with Natural Madder Dye

  • Li, Longchun;Ahn, Cheunsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.228-242
    • /
    • 2019
  • This research investigated the effect of mordants on the degradation of madder dye in silk when silk was treated by the H2O2/UV condition as a laboratory simulation of burial induced degradation. Alum, iron, and alum/iron composite mordanting methods were applied to silk before dyeing with madder dye. Dye extracted from silk was examined using HPLC-DAD-MS analysis. The abundance of the chromatogram peak at 8.88 min retention time was used as the concentration of alizarin pigment in silk. K/S values, CIE $L^{\ast}a^{\ast}b^{\ast}$ values; in addition, Munsell HVC values were obtained using a spectrocolorimeter. The findings indicated that alizarin degraded most severely in silk mordanted by alum/iron composite mordanting than alum mordanting or iron mordanting. Mordanting with alum alone provided a relatively lower dye fixation at the point of dyeing; however, it provided a better survival of alizarin after 12 hours of degradation treatment.

The Study on Degradation of Azo Dyes by Proteus sp. ST-1 (Proteus sp. ST-1에 의한 Azo계 색소의 분해에 관한 연구)

  • Park, Hyung-Sook;Ha, Sang-Tae;Lee, Young-Guen
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1996
  • Direct Sky Blue-5B is an Azo dye known as general for staining of textile and leather, etc., and as materials which are difficult to be biodegraded in nature. The bacterium strain which could degrade direct Sky Blue-5B was isolated from activated sludge of dyeing factory and identified as Proteus sp. by experiment on morphological, cultural and biochemical characteristics, and so named Proteus sp. ST-1. The optimum condition of the strain for degradation of Sky Blue-5B were at about 35$^{\circ}C$ and PH 7~8. The strain had been capable of degradation with organic nitrogen effectively and had completely degraded 200mg/1 of the dye within 12hrs at 37$^{\circ}C$. The enzyme system related to degradation of Azo dye may be intracellular, and so degraded the dye after absorption into cell. The degradation products of Sky Blue-5B by Proton sp. 57-1 were analyzed by Gas Chromatography /Mass Spectrometry and Spectrophotomer, from this observation, it may be infered that the strain degraded the dye directly without any mediate.

  • PDF

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Study on the Degradation Behavior of Berberine Dye and Berberine Dyed Silk using Hydrogen Peroxide/UV/Oxygen Treatment (과산화수소/자외선/산소 처리를 이용한 베르베린 염료 및 염직물의 퇴화거동 연구)

  • Ahn, Cheun-Soon
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.2
    • /
    • pp.238-250
    • /
    • 2012
  • This study examined the degradation behavior of SB(standard berberine) dye and SB dyed silk using HPLC-MS instrument after degradation in the hydrogen peroxide/ultraviolet ray radiation/oxygen system up to 9 days and 40 hours respectively. In the degraded samples, berberine was detected at 5.2 min in the SB dye and 5.3 min in the SB dyed silk with its molecular ion=336 and the UV spectra of quaternary alkaloid. Degradation product 3(m/z=102) newly appeared after 5 day degradation treatment with continued increase till the end of degradation treatment. The amount of berberine in the degraded dye decreased with degradation progression. In the silk dyeings, berberine was detected only up to 21 hour degradation sample. The amount of berberine decreased dramatically during the first 6 hours of degradation treatment. The CIELAB color measurement of the silk dyeings showed dramatic change in the b* value, near zero in the 40 hour degraded silk. CIELAB and Munsell color measurements were in agreement with the HPLC-MS results of the dyed silk in the change of berberine content that the degraded silk became white and lost yellow color.

Degradation of Reactive Black 5 by potassium ferrate(VI) (페레이트를 활용한 아조 염료 Reactive Black 5 분해 연구)

  • Minh Hoang Nguyen;Il-kyu Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.17-27
    • /
    • 2024
  • This paper aims to study the degradation process for refractory azo dye namely Reactive Black 5(RB5) by potassium ferrate(VI) synthesized using the wet oxidation method. The process of degradation of azo dyes by Ferrate was studied with several parameters such as pH, different Ferrate(VI) dosage, different azo dye initial concentration, and temperature. A second-order reaction was observed in all degradation processes for RB5 having the highest degradation efficiency. The highest kapp value of RB5 degradation was 190.49 M-1s-1. In the pH experiments, the neutral condition has been identified as the optimum condition for the degradation of RB5 with 63.2% of dye removal. The efficiency of degradation also depends on the amount of ferrate(VI) available in the reactor. Degradation efficiency increased with an increase in Potassium Ferrate(VI) dosage or a decrease of RB5 initial concentration. The temperature has been reported as one of the most important parameters. From the results, increasing the temperature(up to 45℃) will increase the degradation efficiency of azo dye by Ferrate(VI) and if the temperature exceeds 45℃, the degradation efficiency will be decreased.

Analysis of Alizarin Dye in Accelerated Degradation Conditions

  • Ahn, Cheunsoon
    • The International Journal of Costume Culture
    • /
    • v.7 no.1
    • /
    • pp.40-47
    • /
    • 2004
  • The purpose of this research was to examine the degradation rate of alizarin in accelerated degradation conditions using the GC-MS quantitative analysis. Alizarin dye solution (2.5 x 10/sup -3/ M conc.) were kept in 150℃ oven for total of 7 days and the degradation rate was examined each day. 2.5 × 10/sup -4/M conc. alizarin dye solution was mixed with H₂O₂ according to [H₂O₂]/[dye] ratio 40 and were kept under 365㎚ UV for 2 hours, analyzed after 0, 30, 60, 90, 120min using the GC-MS. Gas chromatogram showed alizarin peak at 9.96 - 10.13 min. retention time range and residual peaks in the wide range from 9.6 to 11.1 min. Oven degradation exhibited an initial decrease in the amount of alizarin, which was followed by increasing amount in 4/sup th/ day. The decrease in the alizarin was significantly shown by the 7/sup th/ day. Same pattern was also observed in the H₂O₂/UV/O₂ degradation samples and was verified ed by the UV-VIS spectra. The differences in the amount of alizarin between 1/sup st/ day and 4/sup th/ day samples, 4/sup th/ day and 7/sup th/ day samples, and Control and 7/sup th/ day samples of the oven degradation were significant at alpha .20.

  • PDF

GC-MS Analysis of Amur Cork Tree Extract and Its Degradation Products

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • The Degradation of amur cork tree extract is investigated by GC-MS after treating the dye with three thermal degradation systems of, room temperature (RT), $4^{\circ}C$ refrigeration (LT), $100^{\circ}C$ oven (OV), and $H_2O_2$/UV/$O_2$ (PER) degradation system for 0-24 days. It was found that PER degradation system represented the highest intensity of degradation treatment followed by OV treatment among the four degradation parameters. The possible fingerprint products of amur cork tree dye, that yielded 68% (or higher) reliability in the NIST spectral match, were isobenzofuran-1,3-dione,4,5-dimethoxy- (8.37 min, PER only), 1,3-dioxolo[4,5-g]isoquinolin-5(6H)-one,7,8-dihydro (9.41 min, PER only), canthine-6-one (10.24 min, RT, LT, OV only), and dihydroberberine (15.05 min, RT, LT, OV, PER) in the order of higher to lower possibility of detection. Unknown products 7 (13.43 min) and 8 (16.35 min) are two other possible fingerprint products of amur cork tree dye that require future identification.

Improved Photo Degradation of Rhodamine B Dye using Iron Oxide/Carbon Nanocomposite by Photo-Fenton Reaction

  • Kim, Min-Il;Im, Ji-Sun;In, Se-Jin;Kim, Hyuk;Kim, Jong-Gyu;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.195-199
    • /
    • 2008
  • A nanocomposite consisting of $Fe_3O_4$ and MWCNT was produced via sol-gel technique using $FeCl_3$ along with MWCNT by calcination at $300^{\circ}C$. The degradation effect of rhodamine B dye has been investigated under UV illumination in a darkroom. The degradation reaction was studied by monitoring the discoloration of dye as a function of irradiation time using UV-visible spectrophotometeric technique. The $Fe_3O_4$-MWCNT samples have continuous degradation ability under the UV illumination with the first order kinetics and the dye removal was better than in the pristine $Fe_3O_4$. The resultant composite catalyst was found to be efficient for the photo-Fenton reaction of the dye.

Analysis of Amur Cork Tree Extract and Dyed Silk upon Thermal Degradation Treatment (황벽 추출염료와 염직물의 열적 퇴화 거동 연구)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.10
    • /
    • pp.1228-1241
    • /
    • 2011
  • This research compares the change in berberine content in liquid dye and the color and dye uptake of amur cork tree dyed silk upon thermal degradation treatment. Thermal degradation of amur cork tree extract and liquid dye of standard berberine was carried out at room temperature, $4^{\circ}C$ refrigeration, and $100^{\circ}C$ oven conditions for 0-192 hours. Amur cork tree dyed silk was treated in a $100^{\circ}C$ oven for 0-240 hours. The berberine content in liquid dye was measured by the relative abundance of the berberine peak in the HPLC-MS chromatograms. The color and dye uptake of dyed silk was measured using K/S value and colorimetric data. The berberine content in standard berberine dye was 2.4 times that of the amur cork tree extract. A similar result was observed between the K/S value of standard berberine dyed silk and that of amur cork tree dyed silk. The berberine dyed silk showed the highest dye uptake after 120 hours in a $100^{\circ}C$ oven. This result was similar to the change in a berberine content in liquid dye in a $100^{\circ}C$ oven treatment. The change of the K/S value of amur cork tree dyed silk and berberine content of amur cork tree extract was similar up to 24 hours. The result suggests that there is a direct relationship between the color change of amur cork tree dyed silk and the berberine content in amur cork tree dye.

Degradation Characteristics of Non-degradable Dye in Aqueous Solution by Ozonation (고도산화공정인 오존처리에 의한 난분해성 염료 수용액의 분해특성)

  • Hwang, Se-Wook;Park, Jong-Hwan;Lee, Su-Lim;Eom, Ju-Hyun;Ryu, Sung-Ki;Choi, Ik-Won;Kim, Seong-Heon;Kang, Se-Won;Cho, Ju-Sik;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.58-64
    • /
    • 2020
  • BACKGROUND: Most of the researches on the dye removal using ozonation have been focused on the removal efficiency. However, the research on their removal characteristics and mechanism according to the reaction time has been still insufficient. METHODS AND RESULTS: In this study, the effects of initial pH and dye concentration with reaction time on the degradation characteristics of methyl orange (MO) and methylene blue (MB) by ozonation were evaluated. The degradation efficiency of MB by ozonation increased with increasing pH. On the other hand, the degradation efficiency of MO by ozonation did not show a significant difference with varing pH. The both MO and MB by ozonation were decomposed within 30 min irrespective of the dye concentration, but the decomposition rates of dyes were faster at lower initial dye concentration. The decomposition efficiency of total organic carbon (TOC) in each dye solution by ozonation was low, which was found to be effective for partial decomposition such as decolorization rather than complete degradation of the dye. CONCLUSION: Overall, ozonation was an effective method for removing nondegradable dyes. However, it is necessary to study the optimization of dye degradation under various environmental conditions for ozonation.